
XI Commandments of Kubernetes Security: A
Systematization of Knowledge Related to

Kubernetes Security Practices
Md. Shazibul Islam Shamim

Dept. of Computer Science
Tennessee Technological University

Cookeville, TN, USA
mshamim42@students.tntech.edu

Farzana Ahamed Bhuiyan
Dept. of Computer Science

Tennessee Technological University
Cookeville, TN, USA

fbhuiyan42@students.tntech.edu

Akond Rahman
Dept. of Computer Science
Tennessee Tech. University

Cookeville, TN, USA
arahman@tntech.edu

Abstract—Kubernetes is an open-source software for automat-
ing management of computerized services. Organizations, such
as IBM, Capital One and Adidas use Kubernetes to deploy
and manage their containers, and have reported benefits related
to deployment frequency. Despite reported benefits, Kubernetes
deployments are susceptible to security vulnerabilities, such as
those that occurred at Tesla in 2018. A systematization of
Kubernetes security practices can help practitioners mitigate
vulnerabilities in their Kubernetes deployments. The goal of
this paper is to help practitioners in securing their Kubernetes
installations through a systematization of knowledge related to
Kubernetes security practices. We systematize knowledge by ap-
plying qualitative analysis on 104 Internet artifacts. We identify
11 security practices that include (i) implementation of role-based
access control (RBAC) authorization to provide least privilege,
(ii) applying security patches to keep Kubernetes updated, and
(iii) implementing pod and network specific security policies.

Index Terms—containers, devops, devsecops, grey literature,
kubernetes, practices, review, security, systematization of knowl-
edge

I. INTRODUCTION

Kubernetes is an open-source software for automating man-
agement of computerized services, such as containers [1].
Practitioners use Kubernetes because it reduces repetitive
manual processes involved in container deployment and man-
agement. Kubernetes is considered one of the most popular
open-source container orchestration tools and it is used in
organizations such as Adidas, Nokia, Spotify, and the U.S.
Department of Defense (DoD) [2], [3]. Benefits of Kubernetes
usage have been documented: for example usage of Kuber-
netes in the U.S. DoD resulted in reducing an eight month
software deployment effort down to one week [3]. For Adidas,
the load time for an e-commerce website was reduced by half,
and release frequency increased from once every 4∼6 weeks
to 3∼4 times a day [2].

Despite reported benefits, Kubernetes users have reported
their concerns related to Kubernetes security. The Cloud
Native Computing Foundation conducted a survey with 1,337
practitioners and reported 40% of the survey participants to be
concerned with Kubernetes security [4]. Anecdotal evidence
supports practitioner-reported concerns related to Kubernetes

security. For example, in 2018, malicious users gained access
to Tesla’s Amazon Web Services (AWS) resources using an
insecure Kubernetes console [5].

Systematizing available knowledge regarding Kubernetes
security practices could support practitioners in securing their
Kubernetes installations. Such systematization of knowledge
can be beneficial for practitioners who (i) want to understand
what activities need to be executed to secure Kubernetes
components and (ii) can use the derived list of practices as
a benchmark to compare their state of security practices.

Systematization of knowledge can be conducted by ana-
lyzing Internet artifacts, such as blog posts and video pre-
sentations. Instead of academic forums, such as research
conferences, practitioners often report what practices they
use in Internet artifacts [6], [7]. In prior work, researchers
have acknowledged the value of Internet artifacts in deriving
practices, and analyzed Internet artifacts to summarize security
practices used in DevOps [8], practices used for continuous
deployment [9], and testing practices [6]. Analysis of Internet
artifacts can be useful for systematizing Kubernetes security
knowledge—a research topic that remains under explored [10].
By systematically analyzing Internet artifacts related to Ku-
bernetes security we hypothesize to derive a list of security
practices.

The goal of this paper is to help practitioners in securing
their Kubernetes installations through a systematization of
knowledge related to Kubernetes security practices.

We answer the following research question: RQ: What Ku-
bernetes security practices are reported by practitioners?

We systematize knowledge related to Kubernetes security
by conducting a grey literature review [11] where we apply
qualitative analysis on Internet artifacts. We collect required
Internet artifacts using the Google search engine with three
search strings. Next, we apply a set of filtering criteria and
apply qualitative analysis [12] on 104 Internet artifacts, such
as blog posts, to construct a list of security practices.

We list our contributions as following:

• A synthesized list of security practices for Kubernetes; and

This is the accepted version of the paper. The final version will appear in the proceedings of SecDev'2020



Master Node

Scheduler

Controlleretcd

API server

Worker Node

Kube proxy

PodKubelet

Container

Kubectl

Kubernetes 
Dashboard

Users

Fig. 1: A brief overview of Kubernetes. Kubernetes users interact with the installation using the Kubernetes dashboard and
‘kubectl’. The purpose of master node is to maintain the desired cluster state and manage worker nodes. Worker nodes are
used to run containerized applications inside the pod.

• A curated dataset [13] with a mapping between Internet
artifact and identified security practices.
The rest of the paper is organized as follows: in Section

II, we provide methodology of our paper. In Section III, we
describe our derived Kubernetes security practices in details.
In Section V, we discuss prior research on Kubernetes. We
discuss our findings with implication for users and researchers
and conclude the paper in Section VI.

II. METHODOLOGY

We first provide background on Kubernetes in Section II-A.
Next, we provide methodology details in Section II-B.

A. Background

Kubernetes is an open-source software for automating man-
agement of computerized services such as containers [1].
A Kubernetes installation is colloquially referred to as a
Kubernetes cluster [1]. Each Kubernetes cluster contains a set
of worker machines defined as nodes. As shown in Figure 1,
two types of nodes exist for Kubernetes: master nodes and
worker nodes.

Each master node includes the following components: ‘API
server’, ‘scheduler’, ‘controller’, and ‘etcd’ [1]. The ‘API
server’ is responsible for orchestrating all the operations within
the cluster. Kubernetes serves its functionality through an
application program interface from the ‘API server’. The
‘controller’ is a component on the master that watches the
state of the cluster through the ‘API server’ and changes the

current state towards the desired state. The ‘scheduler’ is the
component in the control plane responsible for scheduling
pods across multiple nodes. The ‘etcd’ is a key-value based
database that stores all configuration information for the
Kubernetes cluster. Users use a command-line tool ‘Kubectl’
to communicate with the ‘API server’ in the master node.

The worker nodes host the applications that run on Ku-
bernetes [1]. The following components are included in the
worker node: ‘kube-proxy’, ‘kubelet’ and ‘pod’. ‘kube-proxy’
maintains the network rules on nodes. ‘kubelet’ is an agent
that ensures containers are running inside a pod. The pod is
the smallest Kubernetes entity, which includes at least one
active container. A container is a standard software unit that
packages the code and associated dependencies to run in any
computing environment [1].

B. Methodology to Identify Kubernetes Security Practices

We synthesize Kubernetes security practices by conducting
a grey literature review [11]. A grey literature review is
the process of reviewing and synthesizing content included
in Internet artifacts, such as blog posts and video presen-
tations [11]. A grey literature review is different from a
systematic mapping study or systematic literature review, as
in these types of literature reviews, researchers use peer-
reviewed scientific articles indexed in scholar databases. In
prior work, researchers have reported that practitioners use
Internet artifacts, such as blog posts to report their experiences,
recommendations, and the practices they follow. Previously,



researchers have systematically studied Internet artifacts to
identify challenges in microservices development, identify
practices used in continuous deployment [9], identify security
practices used in organization who have adopted DevOps [8],
and software testing [14]. Our hypothesis is that by systemati-
cally analyzing Internet artifacts we can synthesize Kubernetes
security practices reported by practitioners.

We conduct grey literature review using the following steps:
Step#I-Collect Internet Artifacts: We use the Google search
engine to collect our Internet artifacts. We use 3 search
strings: ‘kubernetes security practices’, ‘kubernetes security
good practices’, and ‘kubernetes security best practices’. We
start with the search string ‘kubernetes security practices’,
and later on added the other 2 search strings because while
collecting search results with the first string we observe prac-
tices being referred to as ‘good practices’ and ‘best practices’.
After performing the search we collect the first 100 search
results, as Google displays the results in a sorted order based
on relevance.
Step#II-Select Internet Artifacts: We apply an inclusion
criteria on the collected search results to identify Internet
artifacts that discuss security practices for Kubernetes. The
inclusion criteria is listed below:
• The Internet artifact is not a duplicate;
• The Internet artifact is available for reading; and
• The Internet artifact discusses security practices for Kuber-

netes;
Step#III-Qualitative Analysis: We use open coding [12],
a qualitative analysis technique, to determine the security
practices for Kubernetes. In open coding a rater observes
and synthesizes patterns within unstructured text [12]. To
determine the practices, the first author apply open coding
on the content of the Internet artifacts to derive the security
practices. The first author is a graduate student with a profes-
sional experience of one year in Kubernetes, and one year of
academic experience in software security.
Step#IV-Verify Rating: The process of determining the prac-
tices is susceptible to first author bias. We mitigate this bias by
allocating another rater, the second author of the paper, who
apply closed coding [15] on a randomly selected set of 50
Internet artifacts. Closed coding is the technique of mapping
an entry to a pre-defined category [15]. For each of the 50
Internet artifacts, the second author examined if the artifact of
interest includes a discussion related to the security practices
identified by the first author. The second author has 3 years of
experience in software security. We calculate the agreement
rate between the first and second author for the 50 Internet
artifacts using Cohen’s Kappa [16].

III. KUBERNETES SECURITY PRACTICES

In this section we answer: RQ: What Kubernetes security
practices are reported by practitioners? After applying open
coding on 104 Internet artifacts we derive 11 practices for
Kubernetes security. Of the 104 Internet artifacts 90.38%,
4.81%, and 4.81% are respectively blog posts, videos and pre-

sentations. We describe each of these practices below, where
the count of Internet artifacts is enclosed within parenthesis:
I. Authentication and Authorization (82): The practice of
applying authentication and authorization rules to prevent
malicious users from getting access and performing unautho-
rized activities inside the Kubernetes cluster. Authentication in
Kubernetes refers to the authentication of API requests through
authentication plugins [17]. Authorization in Kubernetes refers
to the evaluation of each authenticated API request against
all policies to allow or deny the request [17]. Practitioners
have reported a set of tasks to implement the practice of
authentication and authorization:
• Anonymous access to the Kubernetes server needs to be

disabled. By default, Kubernetes allows anonymous access
to the Kubernetes API server. [17]

• Default authorization modes need to be disabled.
• Admission controllers need to be enabled. In Kubernetes,

an admission controller is a tool that intercepts requests to
the Kubernetes API after the request is authenticated and
authorized, but before a volume is made persistent.

• Controlling the use of impersonation: Kubernetes allows one
user to act as another user through impersonation headers
[17]. The impersonation feature has benefits, for example,
a user designated as an admin can use this feature to debug
authorization by impersonating another user and checking
if the request was denied. However, in case of failure to
define limitations on who can impersonate and what the
impersonated user can do, the impersonation feature can be
detrimental to the security of Kubernetes.

• Default configurations must be changed. The use of default
configuration in authentication and authorization can allow
any anonymous unauthenticated user to perform malicious
activities. For example, a malicious user can guess the
default configuration of an insecure admission, gain access
to the admission controller, and run malicious commands.
For authentication and authorization, practitioners suggest

the use of OpenID 1, a standard protocol for authentica-
tion. The official Kubernetes documentation also provides
guidelines on how to implement secure authorization using
webhooks, role-based access control (RBAC) and attribute-
based access control (ABAC) [17].
II. Implementing Kubernetes-specific Security Policies (81):
The practice of applying policies to secure Kubernetes com-
ponents, pods and network of Kubernetes clusters to prevent
security breaches.
• Network-specific policies: The practice of applying a net-

work policy to protect communication between Kubernetes
pods from undesirable network communications. By default,
all Kubernetes pods can communicate with other pods.
Practitioners recommend policies to restrict traffic between
pods, restrict API server access and reducing network ex-
posure to secure the network. If network policies are not
defined and firewalls are not set, then anyone may attack the
API server from any IP address. Practitioners also suggest

1https://openid.net/



imposing proper firewalls to block all undesirable network
communication using network policy plugins like Calico 2

and configuring restricted access to a database for pods.
• Pod-specific policies: The practice of implementing a policy

for pods to apply security context to pods and containers.
Pod policies determine how the workloads should run in
the Kubernetes cluster. Without defining a secure context
for the pod, a container may run with root privilege and
write permission into the root file system, which can make
the Kubernetes cluster vulnerable. Practitioners recommend
containers inside a pod must run as a non-root user with
read-only permission and enabling Linux security modules.
Practitioners also recommend that users install the minimal
version of operating systems to reduce the attack surface.

• Generic policies: The practice of applying a generic secu-
rity policy to protect Kubernetes cluster components from
external malicious users. TCP ports for kubelet, API server,
etcd, and network plugins should not be left open and
should require authentication to have visibility. Every user
in the system should have the least privilege by default.
Public SSH access to Kubernetes cluster nodes should be
restricted. Practitioners recommend that Kubernetes users
create an audit policy for logging, and audit policies must
be configured for each Kubernetes cluster at the API server
level.

III. Vulnerability scanning (63): The practice of scanning
Kubernetes components and continuous delivery (CD) com-
ponents for vulnerabilities.
• Kubernetes components, such as containers can contain

vulnerabilities and malicious malware. If vulnerabilities are
present in a Kubernetes cluster, then the entire container
orchestration system, and the provisioned applications, be-
come susceptible to attacks. For example, in 2017, re-
searchers found Docker images embedded with malicious
malware. Practitioners recommended scanning containers
for vulnerabilities with tools,such as ‘Dockscan’ 3 and
‘CoreOS Clair’ 4.

• If images and deployment configurations within CD com-
ponents are not inspected, then it can make the Kubernetes
cluster vulnerable to malicious users. The malicious users
can gain access at a later point when these images are
deployed and may exploit the latent vulnerabilities in Ku-
bernetes production environments. Practitioners recommend
pulling images from a trusted private registry and checking
for the vulnerability of code and images.

IV. Logging (47): The practice of enabling and monitor-
ing logs for the Kubernetes cluster. Practitioners recommend
that logging should be enabled for (i) applications, (ii) the
containers within each pod, and for (iii) Kubernetes clusters
for system health checking. Without enabling logging and
monitoring, users may face difficulty troubleshooting unex-
pected consequences, such as attacks from malicious users and

2https://www.projectcalico.org/calico-networking-for-kubernetes/
3https://github.com/kost/dockscan
4https://github.com/quay/clair

outages. To implement the practice of logging, practitioners
propose the following practices:
• Logs must be monitored at a regular interval.
• Alerts must be set up for any drastic change in log metrics

comparing to previous log records.
V. Namespace separation (36): The practice of separating
namespaces so that the resource of one namespace are not
shared with another. A ‘namespace’ in Kubernetes is a logi-
cally isolated virtual cluster within the same physical cluster.
[17] Creation of separate namespaces enables resources to be
isolated between namespaces. If a separate namespace is not
created for a resource then the resource gets ‘default’ names-
pace. Practitioners recommend that each team in a company
should have a separate namespace for better manageability
and running its development and production environments5. If
there is only a ‘default’ namespace and no separate namespace
for different teams then any malicious user can perform an
attack on the ‘default’ namespace making the entire resource
vulnerable to that attack. Practitioners use the –namespace flag
in kubectl command to separate namepsaces.
VI. Encrypt and restrict access to etcd (34): The practice
of encrypting and restricting access to ‘etcd’, the internal
database used by Kubernetes [17]. Practitioners recommend
‘etcd’ to only be available from the API servers, and to be
isolated behind a firewall so that outsiders can not get access
via API.

By default, Kubernetes stores secret data as plaintext in
‘etcd’6. In that case, if a malicious user gets access to ‘etcd’,
then the malicious user can retrieve sensitive information, such
as database user names, passwords, and queries. Although
Kubernetes does encrypt ‘etcd’, the key for the encryption
is stored as plaintext in the config file in the master node.
For that reason, practitioners recommend using secret man-
agement tools for additional security [17], such as ‘Vault’7 for
encryption.
VII. Continuous update (28): The practice of applying
security patches to keep the Kubernetes cluster updated with
latest security fixes. Practitioners recommend that Kubernetes
users apply updates as well as conducting continuous updates
for the deployed applications within the Kubernetes pods.
Without continuous updates, vulnerabilities might exist in
the Kubernetes installation, which can give malicious users
opportunity to perform attacks.

Vulnerabilities in Kubernetes are not uncommon: for ex-
ample, two vulnerabilities CVE-2019-16276 [18] and CVE-
2019-11253 [19] were discovered in October 2019 in Ku-
bernetes 8. The vulnerability ‘CVE-2019-16276’ was related
to ‘CWE-444 Inconsistent Interpretation of HTTP Requests
(‘HTTP Request Smuggling’)’. The vulnerability ‘CVE-2019-
11253’ was related to ‘CWE-20 Improper Input Validation’.

5https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-
organizing-with-namespaces

6https://ubuntu.com/kubernetes/docs/encryption-at-rest
7https://www.vaultproject.io
8https://security.berkeley.edu/news/kubernetes-vulnerabilities-allow-

authentication-bypass-dos-cve-2019-16276



The security patches for ‘CVE-2019-11253’ and ‘CVE-2019-
16276’ were released on October 16, 2019 and October 22,
2019 respectively 9. If any Kubernetes user does not install
these security patches then the Kubernetes cluster will be
susceptible to a denial of service attack.

For continuous updates, practitioners have also recom-
mended the use of rolling update, i.e. installing Kubernetes
patches without disrupting the availability of the deployed
applications.10 Kubernetes provides tools, such as ‘kubectl’
to perform rolling updates [17].
VIII. Limit CPU and memory quota (18): The practice of
limiting CPU and memory to a pod or a namespace so that
malicious attacks can be mitigated. By default, all resources
in Kubernetes start with unbounded memory requests/limits
and unbounded CPU access. If a malicious user starts a denial
of service (DOS) attack with in a pod within the Kubernetes
cluster then, due to a high volume of requests, kube-scheduler
will create a new pod and an instance of the container will start
inside the new pod. This process continue until it consumes
all available CPU resources and memory leaving all the
applications in starvation. Hence, failure to define CPU and
memory request limits for a pod or the namespace may result
in a consumption of all available resources in the Kubernetes
cluster, enabling a denial of service (DOS) attack.

Practitioners can configure the amount of resources by
defining a maximum number of instances for a container, the
number of CPU share for an application to consume, and the
maximum amount of memory for a pod or namespace.
IX. Enable SSL/TLS support (18): The practice of enabling
secure sockets layer (SSL) or transport layer security (TLS)
protocol to ensure secure and encrypted communication be-
tween Kubernetes components. Enabling TLS between kuber-
netes api server, etcd, kubelet and kubectl ensures secure com-
munication between cluster components. Practitioners suggest
enabling TLS and SSL certificates for Kubernetes components.
X. Separate sensitive workload (14): The practice of running
sensitive applications on a dedicated set of machines to limit
the potential impact of a security breach. For example, if a
malicious user gets access to a node’s ‘kubelet’ credentials,
then the user can access the contents of secrets and gain
control of the entire file system, but the user will not be
able to access the sensitive applications and associated secrets.
Practitioners recommend Kubernetes-provided utilities, such
as ‘taints and tolerations’ [17] that can control where a pod
might be deployed.
XI. Secure metadata access (9): The practice of securing
the sensitive metadata of the Kubernetes cluster. Practitioners
state that the Kubernetes metadata APIs provide a gateway
to expose ‘kubelet’ admin credentials. Google recommends
activating features such as ‘Workload Identity’11 for Google
Kubernetes Engine (GKE) to prevent any sensitive information
from leaking through the metadata service.

9https://cloud.google.com/kubernetes-engine/docs/security-bulletins
10https://k8s.vmware.com/kubernetes-security-best-practices/
11https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-

cluster-metadata

Rater verification: The Cohen’s Kappa between the two
raters is 0.8, which is substantial according to Landis and
Koch [20].

IV. THREATS TO VALIDITY

We discuss the limitations of our paper as following:
Conclusion Validity: Our derived set of practices is limited
to our collection of 104 Internet artifacts. Our collection of
Internet artifacts might have missed Internet artifacts, that may
have included practices not identified in our paper. We mitigate
this limitation by systematically collecting a set of 104 Internet
artifacts.

The identified practices are also susceptible to biases of the
rater who identified the practices by applying open coding.
We mitigate this limitation by allocating another rater, who
applied closed coding. The Cohen’s Kappa between the two
raters is 0.8. which is substantial [20].
Construct Validity: Our identified categories are susceptible
to experimenter bias. The first author who derived the practices
has professional experience in Kubernetes. The first author’s
professional experience can formulate expectations related to
security practices for Kubernetes, which may influence the
identified practices.
External Validity: Our findings might not be generalizable as
we might have excluded practices unique to the proprietary
domains, and not discussed publicly in Internet artifacts.

V. RELATED WORK

Our paper is related to prior research that has investigated
usage and maintenance of Kubernetes. Burns et al. [21]
described the evolution of container management systems at
Google, and described how two initial internal systems called
Borg and Omega was evolved into Kubernetes. Brewer [22]
conducted a case study on Kubernetes and discussed how key
concepts of Kubernetes can be used to simplify scaling of
containers. Medel et al. [23] used real data collected from
Kubernetes and applied formal modeling to characterize per-
formance and resource management in Kubernetes. Chang et
al. [24] constructed a monitoring platform to dynamically pro-
vision cloud resources using Kubernetes. Vayghan et al. [25]
investigated availability of Kubernetes using a set of experi-
ments, and reported that service outages can occur frequently.
Shah and Dubaria [26] compared orchestration management
features of Docker Swarm, Kubernetes, and Google Cloud
Platform, and observed Kubernetes to provide features, such
as deployment, monitoring, and easy scalability. Takahashi et
al. [27] proposed a portable load balancer for Kubernetes, and
reported improved portability without sacrificing performance.
Song et al. [28] used Kubernetes to construct an auto scaling
system for API gateways. The authors [28] report that their
constructed system improves utilization of system resources,
while ensuring high availability. Muralidharan et al. [29]
constructed a Kubernetes-based system to monitor and manage
Internet of Things (IoT) applications for smart cities. Wei-
guo et al. [30] constructed a resource scheduling algorithm for
Kubernetes using ant colony and particle swarm optimization



techniques. The scheduling algorithm proposed by Wei-guo et
al. [30] outperforms the original algorithm used in Kubernetes.

The above-mentioned discussion highlights Kubernetes re-
search in two areas: (i) use of Kubernetes in creating systems,
such as monitoring systems and (ii) case studies on Kubernetes
related to performance and resource management. We observe
a lack of research related to security practices for Kubernetes.
We address this research gap by systematically synthesizing
practitioner-reported security practices using grey literature
review.

VI. DISCUSSION AND CONCLUSION

With great power comes responsibilities: Kubernetes pro-
vide utilities for users to manage containers at scale. However,
our description of the 11 practices in Section III shows that
effective and secure usage of Kubernetes requires the imple-
mentation of security practices applicable for multiple com-
ponents within the Kubernetes installations: containers, pods,
‘etcd’ database etc. The application of the aforementioned
11 practices also need a deep understanding of Kubernetes
components and configurations. Our discussion in Section III
can be helpful in two ways: first, understand the components
where security practices are applicable. Second, practitioners
who already have Kubernetes in place, can use our identified
practices as a benchmark and compare their usage of practices.
Implication for researchers: Our discussion in Section V
shows that Kubernetes security to be an under explored
research area. Our derived list of security practices can provide
the groundwork for future research in Kubernetes security.
To what extent the reported security practices are in use
can be quantified systematically. Researchers can measure
the attack surface associated with Kubernetes components
and configurations. Researchers can find possible mitigation
strategies such as static analysis and dynamic analysis to
inspect insecure practices in Kubernetes. Researchers can also
quantify how frequently the identified practices are actually
in use. Furthermore, detection and mitigation of security
misconfigurations that occur in Kubernetes could be of interest
to researchers.
Conclusion: As Kubernetes usage becomes increasingly popu-
lar, securing Kubernetes is of paramount importance to practi-
tioners. A systematization of knowledge related to practitioner-
reported practices might be helpful to secure Kubernetes
installations. We conduct a qualitative analysis of Internet
artifacts, such as blog posts to identify 11 security practices
for Kubernetes. Our derived list of practices include continu-
ous update, enable SSL/TLS support, vulnerability scanning
and logging. Our paper can help practitioners in securing
Kubernetes installations. Further, our findings can lay the
groundwork to conduct research in Kubernetes security.

ACKNOWLEDGEMENT

We thank the members of the PASER research group
at Tennessee Technological University and Patrick Morrison
from IBM for their valuable feedback.

REFERENCES

[1] S. Miles, Kubernetes: A Step-By-Step Guide For Beginners To Build,
Manage, Develop, and Intelligently Deploy Applications By Using
Kubernetes (2020 Edition). Independently Published, 2020. [Online].
Available: https://books.google.com/books?id=M4VmzQEACAAJ

[2] Kubernetes User Case Studies, May 2020. [Online]. Available:
https://kubernetes.io/case-studies/

[3] With Kubernetes, the U.S. Department of Defense Is Enabling
DevSecOps on F-16s and Battleships, May 2020. [Online]. Available:
https://www.cncf.io/case-study/dod/

[4] CNCF SURVEY 2019, March 2019.
[Online]. Available: https://www.cncf.io/wp-
content/uploads/2020/03/CNCF Survey Report.pdf

[5] Tesla cloud resources are hacked to run cryptocurrency-
mining malware, February 2018. [Online]. Avail-
able: https://arstechnica.com/information-technology/2018/02/tesla-
cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/

[6] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52–81, 2018.

[7] R. L. Glass, Software Creativity 2.0. developer.* Books, 2006.
[8] A. A. Ur Rahman and L. Williams, “Software security in devops:

Synthesizing practitioners’ perceptions and practices,” in Proceedings
of the International Workshop on Continuous Software Evolution and
Delivery, ser. CSED ’16. New York, NY, USA: ACM, 2016, pp. 70–76.
[Online]. Available: http://doi.acm.org/10.1145/2896941.2896946

[9] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, “Synthesizing
continuous deployment practices used in software development,”
in Proceedings of the 2015 Agile Conference, ser. AGILE ’15.
USA: IEEE Computer Society, 2015, p. 1–10. [Online]. Available:
https://doi.org/10.1109/Agile.2015.12

[10] Advanced Persistence Threats - The Future of Kubernetes
Attacks, March 2020. [Online]. Available: https://darkbit.io/blog/future-
kubernetes-attacks-rsa-2020

[11] S. Hopewell, M. Clarke, and S. Mallett, “Grey literature and systematic
reviews,” Publication bias in meta-analysis: Prevention, assessment and
adjustments, pp. 49–72, 2005.

[12] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[13] Anonymous, “Dataset for paper.” [Online]. Available:

https://figshare.com/s/548f0f90a0f2744cf33a
[14] V. Garousi, M. Felderer, and T. Hacaloğlu, “Software

test maturity assessment and test process improvement:
A multivocal literature review,” Information and Software
Technology, vol. 85, pp. 16 – 42, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584917300162

[15] B. F. Crabtree and W. L. Miller, Doing qualitative research. sage
publications, 1999.

[16] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

[17] Kubernetes, “Production-grade container orchestration.” [Online].
Available: https://kubernetes.io/docs/

[18] National Vulnerability Database, September 2019, [online]
https://nvd.nist.gov/vuln/detail/CVE-2019-16276. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-16276

[19] National Vulnerability Database, October 2019, [online]
https://nvd.nist.gov/vuln/detail/CVE-2019-11253. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-11253

[20] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[21] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, p. 70–93, Jan. 2016.
[Online]. Available: https://doi.org/10.1145/2898442.2898444

[22] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
167. [Online]. Available: https://doi.org/10.1145/2806777.2809955

[23] V. Medel, O. Rana, J. a. Banares, and U. Arronategui, “Modelling
performance & resource management in kubernetes,” in Proceedings
of the 9th International Conference on Utility and Cloud
Computing, ser. UCC ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 257–262. [Online]. Available:
https://doi.org/10.1145/2996890.3007869



[24] C. Chang, S. Yang, E. Yeh, P. Lin, and J. Jeng, “A kubernetes-
based monitoring platform for dynamic cloud resource provisioning,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–6.

[25] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “De-
ploying microservice based applications with kubernetes: Experiments
and lessons learned,” in 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 2018, pp. 970–973.

[26] J. Shah and D. Dubaria, “Building modern clouds: Using docker,
kubernetes google cloud platform,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC), 2019, pp.
0184–0189.

[27] K. Takahashi, K. Aida, T. Tanjo, and J. Sun, “A portable load
balancer for kubernetes cluster,” in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region,

ser. HPC Asia 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 222–231. [Online]. Available:
https://doi.org/10.1145/3149457.3149473

[28] M. Song, C. Zhang, and E. Haihong, “An auto scaling system for
api gateway based on kubernetes,” in 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS),
2018, pp. 109–112.

[29] S. Muralidharan, G. Song, and H. Ko, “Monitoring and managing iot
applications in smart cities using kubernetes,” CLOUD COMPUTING,
vol. 11, 2019.

[30] Z. Wei-guo, M. Xi-lin, and Z. Jin-zhong, “Research on kubernetes’
resource scheduling scheme,” in Proceedings of the 8th International
Conference on Communication and Network Security, ser. ICCNS 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
144–148. [Online]. Available: https://doi.org/10.1145/3290480.3290507


