
Testing Practices for Infrastructure as Code

Mohammed Mehedi Hasan
Independent University
Dhaka, Bangladesh

mehedi.bueteee.23@gmail.com

Farzana Ahamed Bhuiyan
Tennessee Tech University

Cookeville, TN, USA
fbhuiyan42@students.tntech.edu

Akond Rahman
Tennessee Tech University

Cookeville, TN, USA
arahman@tntech.edu

ABSTRACT

Infrastructure as code (IaC) helps practitioners to rapidly deploy

software services to end-users. Despite reported benefits, IaC scripts

are susceptible to defects. Defects in IaC scripts can cause serious

consequences, for example, creating large-scale outages similar to

the Amazon Web Services (AWS) incident in 2017. The prevalence

of defects in IaC scripts necessitates practitioners to implement

IaC testing and be aware of IaC testing practices. A synthesis of

IaC testing practices can enable practitioners in early mitigation of

IaC defects and also help researchers to identify potential research

avenues. The goal of this paper is to help practitioners improve the

quality of infrastructure as code (IaC) scripts by identifying a set

of testing practices for IaC scripts. We apply open coding on 50

Internet artifacts, such as blog posts to derive IaC testing practices.

We identify six testing practices that include behavior-focused test

coverage, the practice of measuring coverage of IaC test cases in

terms of expected behavior. We conclude our paper by discussing

how practitioners and researchers can leverage our derived list of

testing practices for IaC.

CCS CONCEPTS

· Software and its engineering→ Software defect analysis.

KEYWORDS

configuration as code, devops, empirical study, infrastructure as

code, practices, qualitative analysis, testing

ACM Reference Format:

Mohammed Mehedi Hasan, Farzana Ahamed Bhuiyan, and Akond Rahman.

2020. Testing Practices for Infrastructure as Code. In Proceedings of the

1st ACM SIGSOFT International Workshop on Languages and Tools for Next

Generation Testing (LANGETI ’20), November 8ś9, 2020, Virtual, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3416504.3424334

1 INTRODUCTION

Continuous deployment (CD) is the process of rapidly deploying

software or services automatically to end-users [33]. In CD, if all

test cases and quality checks pass, then submitted software and

service changes deploy automatically to production servers [33].

One practice that is integral to CD is the practice of infrastructure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LANGETI ’20, November 8ś9, 2020, Virtual, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8123-9/20/11. . . $15.00
https://doi.org/10.1145/3416504.3424334

as code (IaC). IaC scripts are essential to implement an automated

deployment pipeline, which facilitates CD [20].

IaC is the practice of automatically defining and managing sys-

tem configurations through source code [20]. Practitioners use IaC

tools, such as Ansible 1 and Chef 2 that provide utilities to imple-

ment the practice of IaC [16]. IaC tools provide programming syntax

and libraries so that practitioners can specify configuration and

dependency information as scripts. As a practice, IaC is emerging

and growing in popularity amongst practitioners [28]. As shown

in Figure 1, based on Google trends data related to the search term

‘infrastructure as code’ interest in IaC has steadily increased since

2012.

Use of IaC has resulted in benefits for information technology (IT)

organizations, for example, the Enterprise Strategy Group surveyed

practitioners in 2016 and reported the use of IaC scripts to help IT

organizations on average gain 210% in time savings 3. As another

example, the use of IaC scripts helped the National Aeronautics

and Space Administration (NASA) to reduce its multi-day patching

process to 45 minutes [9].

Despite reported benefits, IaC scripts are susceptible to defects,

which can cause serious consequences, e.g., a defect in an IaC

script resulted in an outage worth of 150 million USD for Amazon

Web Services (AWS) in 2017 4. As another example, execution of a

defective IaC script erased home directories of ∼270 users in cloud

instances maintained by Wikimedia Commons [5].

The prevalence of IaC defects [26] necessitates the testing of

IaC scripts. However, not knowing what practices to implement

can deter practitioners from adopting IaC testing [16]. Derivation

of IaC testing practices can enable practitioners to test IaC scripts

effectively and also identify future research avenues that could be

of interest to the software engineering research community.

One strategy to identify IaC testing practices is to systematically

analyze Internet artifacts, such as blog posts and video presentations

that discuss IaC testing. Practitioners often report what practices

they use in Internet artifacts instead of academic forums, such as

research conferences [11, 13]. In prior work, researchers have ac-

knowledged the value of Internet artifacts in deriving practices and

analyzed Internet artifacts to summarize security practices used in

DevOps [37, 41] and practices used for continuous deployment [33].

Analysis of Internet artifacts can be useful to identify IaC testing

practices, a research topic that remains under-explored [28]. Our

hypothesis is that by analyzing Internet artifacts we can identify a

list of testing practices for IaC.

1https://www.ansible.com/
2https://chef.io/
3https://puppet.com/resources/analyst-report/the-economic-benefits-puppet-
enterprise
4https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/

This is the accepted version of the paper. The final version will appear in the proceedings of LANGETI'2020

LANGETI ’20, November 8–9, 2020, Virtual, USA Mohammed Mehedi Hasan, Farazana Ahamed Bhuiyan, Akond Rahman

●
●

●
●

●
● ●

● ● ●
●

●

●

●

●

●

250

500

750

1000

2004 2008 2012 2016

Year

S
e
a
rc

h
C

o
u
n
t

Figure 1: Growing interest in IaC based on Google trends

data. The x and y axis respectively, presents the year and the

search count for each year related to the term ‘infrastructure

as code’.

The goal of this paper is to help practitioners improve the quality

of infrastructure as code (IaC) scripts by identifying a set of testing

practices for IaC scripts.

We answer the following research question:What testing prac-

tices can be used for infrastructure as code scripts according to prac-

titioners? We apply open coding [34] on 50 Internet artifacts to

derive IaC testing practices.

Our contribution is a list of IaC testing practices.

We organize the rest of the paper as follows: Section 2 provides

IaC background and prior research related to IaC. We provide our

empirical study in Section 3. Section 4 provides a discussion of how

practitioners and researchers can leverage our findings. Finally, we

conclude in Section 5.

2 BACKGROUND AND RELATED WORK

We provide background and discuss related work in this section.

2.1 Background

IaC is the practice of automatically defining and managing de-

ployment environments, system configurations, and infrastructure

through source code [20]. Before IaC tools were available, sys-

tem operators used to create custom configuration scripts, which

were not developed and maintained using a systematic software

development process [40]. The ‘as code’ suffix refers to applying

development activities considered to be good practices in software

development, such as keeping scripts in version control, testing,

and submitting code changes in small units [25]. With the availabil-

ity of cloud computing resources such as AWS 5, the development

and maintenance of deployment scripts became complex, which

motivated IT organizations to treat their configuration scripts as

regular software source code. IaC scripts are also referred to as con-

figuration scripts [38] or configuration as code scripts [30]. With

respect to maintainability, debugging, and testing, IaC is different

to that of general purpose programming languages (GPLs) [16, 21].

Multiple tools, such as Ansible and Chef exist to implement

the practice of IaC. A 2019 survey with 786 practitioners reported

Ansible as the most popular language to implement IaC, followed

5https://aws.amazon.com/

by Chef 6 7. Both, Ansible and Chef provide multiple libraries to

manage infrastructure and system configurations. In the case of

Ansible, developers can manage configurations using ‘playbooks’,

which uses YAML files to manage configurations. For example, as

shown in Figure 2, an empty file ‘/tmp/sample.txt’ is created using

the ‘file’ module provided by Ansible. The properties of the file

such as, path, owner, and group can also be specified. The ‘state’

property provides options to create an empty file using the ‘touch’

value.

1 #This is an example Ansible script

2
3 file

4 path: /tmp/sample.txt

5 state: touch

6 owner: test

7 group: test

8 mode: 0600

9 end

Comment

‘file’ module

Parameters of
file ‘/tmp/sample.txt’

Figure 2: Annotation of an example Ansible script.

In the case of Chef, configurations are specified using ‘recipes’,

which are domain-specific Ruby scripts. Dedicated libraries are also

available to maintain certain configurations. As shown in Figure 3,

using the ‘file’ resource, an empty file ‘/tmp/sample.txt’ is created.

The ‘content’ property is used to specify the content of the file is

empty.

1 #This is an example Chef script

2

3 file "/tmp/sample.txt" do

4 content ""

5 owner "test"

6 group "test"

7 mode 00600

8 end
✆

Comment

Resource
‘file(/tmp/sample.txt)’

Properties of
file ‘/tmp/sample.txt’

Figure 3: Annotation of an example Chef script.

2.2 Related Work

Our paper is closely related to prior research on IaC scripts. Sharma

et al. [38], Schwarz [36], and Bent et al. [42], in separate stud-

ies investigated code maintainability aspects of Chef and Puppet

scripts. Hanappi et al. [17] investigated how the convergence of

IaC scripts can be automatically detected, and proposed an auto-

mated model-based detection framework for convergence. Rahman

et al. [26] constructed a defect taxonomy for IaC scripts that in-

cluded eight defect categories. In another work, Rahman et al. [27]

identified five development anti-patterns for IaC scripts. Guerriero

et al. [16] identified lack of testing practices as a barrier for testing

IaC scripts. Ikeshita et al [23] reported testing of IaC scripts can

be time-consuming, and proposed a test suite reduction technique

for IaC scripts. Hummer et al. [21] observed that testing in IaC

is different to that of GPLs, as testing in IaC necessitates testing

of production environments. In another work, Hummer et al. [22]

created a tool to automatically test the idempotency of IaC scripts.

6https://info.flexerasoftware.com/SLO-WP-State-of-the-Cloud-2019
7https://www.techrepublic.com/article/ansible-overtakes-chef-and-puppet-as-the-
top-cloud-configuration-management-tool/

Testing Practices for Infrastructure as Code LANGETI ’20, November 8–9, 2020, Virtual, USA

Artifact collection Filtering

Open codingIaC testing practices

Figure 4: Methodology to identify IaC testing practices.

Rahman and Williams [1] and Palma et al. [8] in separate restudies

identified code metrics that show correlation with defective IaC

scripts. In separate papers, Rahman et al. identified insecure coding

patterns for Puppet scripts [29], and Ansible and Chef scripts [31].

Rahman andWilliams [32] characterized defective IaC scripts using

text mining and created prediction models using text feature met-

rics. Rahman et al. [28] conducted a systematic mapping study with

32 IaC-related publications and identified limited number of testing

tools for IaC scripts. They [28] also observed a lack of research

related to best practices in the domain of IaC.

From the above-mentioned discussion, we observe a lack of

research related to IaC testing practices, whichwe have addressed in

our paper. Our paper complements the testing-related observations

and recommendations related to IaC reported by Rahman et al. [28].

3 EMPIRICAL STUDY

In this section we provide the methodology and results for our re-

search question:What testing practices can be used for infrastructure

as code scripts?

3.1 Methodology

We conduct our empirical study by systematically analyzing Inter-

net artifacts, such as blog posts and videos [19]. Systematic investi-

gation of these artifacts has been previously used by researchers to

identify practices used in continuous deployment [33]. Previously,

researchers [19, 33] have observed that practitioners tend to report

their experience and their perception of best practices in blog posts.

Our hypothesis is that by analyzing artifacts we will be able to

synthesize IaC testing practices.

As summarized in Figure 4, we conduct our empirical study using

three steps described below:

Step#1-Internet Artifact Collection: First, we use the Google

search engine to collect Internet artifacts. We use the following

search strings:

• łtesting infrastructure as codež

• łtesting ansible playbooksž

• łtesting ansible rolesž

• łtesting chef cookbookž

• łtesting terraform codež

• łtesting best practices for ansible scriptsž

• łtesting best practices for chef scriptsž

• łtesting best practices for puppet scriptsž

• łtesting best practices for terraform scriptsž

Our first search string is ‘testing infrastructure as code’. Using

our first search string, we collect the first 50 search results sorted

by relevance according to Google search engine. From the collected

first 50 search results we observe Internet artifacts to mention

testing for 4 languages: Ansible, Chef, Puppet, and Terraform. To

include artifacts that discuss testing practices for Ansible, Chef,

Puppet, and Terraform we added the other 8 search strings. The

above-mentioned approach is similar to forward snowballing [43]

where we start with a set of search strings and generate more search

strings until no new search string is found. After generating the

above-mentioned 8 search strings we are unable to generate new

search strings. We use these search strings in the next step to collect

necessary Internet artifacts. The search string derivation process is

conducted by the first author.

We collect the first 100 search results for each search string

sorted by relevance according to Google search engine. We collect

the first 100 search results because from manual inspection we

identify irrelevant search results to appear after the first 100 search

results. The first author manually inspect the top 250 search results

for each search string to confirm that the top 100 search results

would suffice to identify relevant IaC testing practices. Altogether,

we collect 900 search results from the 9 search strings. All the search

results are collected using the browser’s incognito browsing mode

to mitigate search result bias.

Step#2-Internet Artifact Filtering: We systematically apply fil-

tering to identify Internet artifacts related to IaC testing. First, we

remove duplicate Internet artifacts collected from our search results.

Second, we check if the Internet artifact is available for reading. Arti-

facts can be inaccessible, and we exclude such search results. Third,

we manually read the content of the collected search to determine

if the Internet artifact discusses about IaC testing. We exclude Inter-

net artifacts that do not explicitly discuss IaC testing. The artifact

filtering process is conducted by the first author.

Step#3-Open Coding: We apply open coding [6] on the collected

Internet artifacts, which we obtain from Step#2. In open coding a

rater observes and synthesizes patterns within unstructured text

[6]. The first author, who has six years of professional experience

in software engineering conducts open coding. During open cod-

ing the first author read the content of each artifact to generate

sub-categories. Later, the sub-categories are merged based on simi-

larities to derive categories. We apply open coding because using

open coding the rater can determine (i) if the collected Internet

artifacts are in fact actually related to IaC testing practices, and (ii)

identify testing practices used for IaC. In our analysis, one Internet

artifact can include multiple practices.

Rater verification: The process of deriving categories is suscep-

tible to bias. We mitigate this bias by allocating two more raters

rater: the second and last author of the paper. Both rater separately

applies closed coding [6] on the collected 50 Internet artifacts. The

second author is a third year PhD student with a professional ex-

perience of 2 years in software engineering. The last author has 7

LANGETI ’20, November 8–9, 2020, Virtual, USA Mohammed Mehedi Hasan, Farazana Ahamed Bhuiyan, Akond Rahman

years of experience in IaC, and a professional experience of 5 years

in software engineering. For each of the 50 artifacts, both raters

individually examine if the artifact includes a discussion related

to the categories identified by the first author. We calculate the

agreement between the first and the second author, and the first

and the last author using Cohen’s Kappa [4].

For the 50 Internet artifacts the Cohen’s Kappa is 0.68 between

the first and second author, which suggests ‘moderate’ agreement,

according to Landis and Koch [24]. Reasons for disagreements are

attributed to the second author’s lack of familiarity with the topic.

The agreement rate between the first and last author is 1.0.

3.2 Results

For each of the 9 search strings we collect the 100 most relevant

search results on December 2019. From our set of 900 search results

we remove duplicates and obtain 228 Internet artifacts. Next, we

check for availability and find 223 artifacts to be available. Next,

we read each of the 223 artifacts and identify 50 artifacts to actually

discuss IaC testing practices. A breakdown of the Internet artifact

categories is available in Table 1. The constructed dataset is available

online [2].

Table 1: Distribution of Internet Artifacts

Type of Artifact Count

Blog 36

Stack Overflow 4

Slideshare 4

Github Repository 3

Video 3

Testing Practices for IaC: We identify six practices for IaC testing.

The count of artifacts that mention each practice is provided in

Table 2. The temporal evolution of the six practices is provided in

Table 3. We describe each practice below:

Table 2: Count of artifacts mentioning practices

Practice name Count of artifacts

Use of Automation 33

Sandbox Testing 23

Testing Every IaC Change 22

Behavior-focused Test Coverage 16

Avoiding Coding Anti-patterns 15

Remote Testing 3

I. Avoiding Coding Anti-patterns: The practice of avoiding

coding anti-patterns while developing testing code so that test

code for IaC is easier to maintain and technical debt is reduced.

Example coding anti-patterns include long statements and missing

default block in switch statement. Identification of coding anti-

patterns in IaC test scripts can be performed using linters. Example

linters include ‘ansible-lint’[39], ‘Foodcritic’ [7], and ‘tflint’[15]

respectively, for Ansible, Chef, and Terraform.

II. Behavior-focused Test Coverage: The practice of measuring

coverage of IaC test cases in terms of expected behavior. For cover-

age measurement of IaC testing, practitioners suggest the use of

behavior i.e., what is the expected output of IaC scripts, and gener-

ate test cases accordingly so that the expected output is satisfied

by the script of interest. The quality of the test cases are evaluated

based on if the IaC script of interest follows expected behavior.

While discussing behavior-driven testing for IaC scripts, one

practitioner [35] argued for ‘robust expectations’ stating, łThe art

here is to make the expectations robust enough to survive irrelevant

changes in the system, while is still sensitive enough to detect actual

problems with the codež. To facilitate behavior-driven testing for IaC,

practitioners have mentioned tools, such as TestInfra and InSpec.

With TestInfra practitioners can write test code in python to verify

the states of infrastructure using pytest utilities[18]. InSpec uses

Ruby and provide Ruby-based plugins to verify infrastructure states.

III. Remote Testing: The practice of testing IaC scripts in remote

environments, for example testing IaC scripts in an AWS instance.

Practitioners stated that testing IaC scripts only in local environ-

ments can be limiting because an IaC script may execute correctly

in a local environment, but erroneously in a remote environment.

One practitioner [35] emphasized on remote testing by stating, łBy

running the tests on real systems, you can determine whether your

application responded correctly in a realistic configuration.ž

Practitioners [3] have suggested the use of testing tools, such

as Molecule 8 to perform remote testing because they perceive

Molecule to emulate testing on actual systems, such as AWS.

IV. Sandbox Testing: The practice of testing IaC scripts in iso-

lation so that provisioned production infrastructure does not get

impacted. Practitioners have reported that during testing of IaC

scripts, provisioned instances might be inadvertently updated or

deleted. The practice of sandbox testing helps practitioners to not

impact any production instances. As a rule of thumb, practitioners

suggest isolating development, staging, and production environ-

ments, so that testing activities in one environment does not impact

the other. One practitioner [3] stated łI would actually create a com-

pletely separate place to run these tests, where you don’t have to worry

[about] what happens if I accidentally delete the wrong thing or create

the wrong thing?ž.

Practitioners have mentioned that tools, such as EC2 driver and

molecule-gce provided by Molecule that can be used to set up sand-

box testing in public and private cloud environments. Practitioners

have also commented on the life cycle of sandbox testing. After

testing of IaC scripts, if the sandbox is not required anymore, it

should be destroyed to avoid unnecessary pricing. For example,

in 2016, Bauer Media’s employees inadvertently forgot to delete

necessary instances after testing, which resulted in unnecessary

costs 9.

V. Testing Every IaC Change: The practice of testing whenever

there are changes in IaC scripts. Practitioners suggested applica-

tion of continuous integration (CI) for IaC scripts so that every

change in IaC scripts is validated and integrated. Practitioners have

acknowledged that testing every change using CI can be lengthy as

20 minutes, but the benefits outweigh the limitations. Practitioner-

reported benefits of testing every change in IaC scripts include (i)

obtaining faster feedback on code changes, (ii) early identification

of dependency defects, such as container versions, and (iii) able to

8https://molecule.readthedocs.io/en/latest/
9https://www.itnews.com.au/news/how-bauer-media-dealt-with-public-cloud-bill-
shock-420319

Testing Practices for Infrastructure as Code LANGETI ’20, November 8–9, 2020, Virtual, USA

Table 3: Usage of IaC Testing Practices Reported Every Year

Practice 2015 2016 2017 2018 2019

Avoiding Coding Anti-patterns 1 3 4 2 5

Behavior-focused Test Coverage 0 1 3 6 6

Remote Testing 0 0 0 3 0

Sandbox Testing 2 2 6 6 7

Test Every IaC Change 1 3 6 4 8

Use of Automation 1 3 10 9 10

test IaC scripts for multiple platforms. Practitioners suggest that

the above-mentioned benefits may also impact the open source

community, where volunteers contribute code using pull requests

[14].

Even if nothing is changed in IaC scripts, practitioners still sug-

gest testing scripts at regular intervals to examine if environmental

changes, such as operating system updates and infrastructure ver-

sion updates cause problems. One practitioner [12] mentioned using

a ‘weekly cron schedule’ for testing IaC scripts: łall the common

usage scenarios are thoroughly and automatically testedÐnot only on

every pull request and commit, but also on a weekly cron schedulež.

Practitioners can use unit testing tools, such as Molecule for

Ansible, and CI tools, such as Travis CI 10 to implement this practice.

VI. Use of Automation: The practice of applying automation

to implement testing for IaC scripts with IaC-specific tools, such

as Molecule. From our analysis, we observe practitioners to advo-

cate for automation because automation helps in reducing manual

efforts. A practitioner [3] emphasized on the use of automation

by stating łI think this is the general law: infrastructure code that

does not have automated tests is broken. I don’t mean it’s going to be

broken in the future. I mean it’s probably broken right now.ž

From our analysis of Internet artifacts we observe practitioners

to mention availability of tools that can help in automated test-

ing of IaC scripts. We observe available IaC testing tools to be

language-dependent, for example, Molecule and Test Kitchen 11 12

are automated testing tools, respectively, for Ansible and Chef.

The above-mentioned automated testing tools also include other

features, such as syntax checking and environment setup. For ex-

ample, Molecule uses ansible-lint for syntax checking and Docker

for setting up environment. To setup environment, Test Kitchen

uses Virtualbox instead of Docker. Terratest claims to help prac-

titioners in setting up cloud providers and test such cloud setup.

In short, available automated testing tools differ from each other

with respect to (i) availability of features and (ii) the underlying

technology that enables the implementation of such features.

Limitations: We discuss the limitations of our paper as following:

• External Validity: Our list of practices and the collection of Inter-

net artifacts used to derive such practices are not comprehensive.

We may have missed practices that could have been identified

by practitioner interviews.

• Conclusion Validity: The derivation process of the practices is

subject to rater bias, which we mitigate using rater verification.

10https://travis-ci.org/
11https://docs.chef.io/workstation/kitchen/
12https://github.com/gruntwork-io/terratest

Furthermore, our derived practices is limited to the search process

using which we collected the set of 50 Internet artifacts.

4 IMPLICATIONS

We envision future directions by discussing how practitioners and

researchers can leverage our research findings.

Implication for practitioners: Our categorization of six practices can

be useful for:

• Practitioners who want to adopt IaC and are seeking guidance

on how to conduct IaC testing;

• Practitioners who are already using IaC but seek guidance on IaC

testing practices and necessary tools to implement such practices;

and

• Practitioners who want to compare their use of testing practices

with what is being used by other practitioners.

Implication for researchers: Our paper lays the groundwork to con-

duct further research described below:

• Following recommendations from Rahman et al. [28], we advo-

cate researchers to collaborate with practitioners for constructing

a comprehensive set of testing practices for IaC scripts. Our list is

preliminary, which can be extended to construct a comprehensive

list of practices.

• Researchers can investigate how many of the identified six prac-

tices are being adopted at what frequency in the open source and

proprietary domain.

• Researchers can investigate the challenges of adopting IaC testing

practices using mixed-method analysis [10], where researchers

can conduct online surveys as well as semi-structured interviews.

Such analysis can reveal the need for better tools and techniques

upon which researchers can focus.

• Future research can investigate if IaC script quality is correlated

with the usage of testing practices. While source code metrics [1]

and semantics [32] of IaC script quality have been studied, the

relationship between IaC script quality and testing remains un-

known.

• Using empirical studies researchers can investigate if adoption

of identified testing practices is beneficial for automated infras-

tructure provisioning.

• Researchers can categorize and quantify testing anti-patterns

that occur in IaC scripts.

5 CONCLUSION

Lack of testing can introduce defects in IaC scripts, which in turn

can have serious consequences. A synthesis of IaC testing practices

can be helpful for practitioners to mitigate defects in IaC scripts.

LANGETI ’20, November 8–9, 2020, Virtual, USA Mohammed Mehedi Hasan, Farazana Ahamed Bhuiyan, Akond Rahman

We conducted an empirical study with 50 Internet artifacts and

identified 6 IaC testing practices. Use of automation tools is the

most frequently mentioned practice. While we acknowledge that

our list of six practices is not comprehensive, our identified practices

showcase emerging results related to IaC testing practices that can

be used by practitioners. Furthermore, our findings can be leveraged

by the software engineering community to conduct further research

in the domain of IaC testing.

ACKNOWLEDGMENTS

We thank the PASER group at Tennessee Technological Univer-

sity (TTU) for their valuable feedback. This research was partially

funded by the National Science Foundation (NSF) award # 2026869

and the Cybersecurity Education, Research and Outreach Center

(CEROC) at TTU.

REFERENCES
[1] Rahman Akond and Williams Laurie. 2019. Source Code Properties of Defective

Infrastructure as Code Scripts. Information and Software Technology (2019).
https://doi.org/10.1016/j.infsof.2019.04.013

[2] Anonymous Authors. 2020. Dataset for IaC Testing Practices Paper. https:
//figshare.com/s/605c5b636450a29f420e

[3] Yevgeniy Brikman. 2018. 5 Lessons Learned From Writing Over 300,000 Lines
of Infrastructure Code. https://www.hashicorp.com/resources/lessons-learned-
300000-lines-code/. [Online; accessed 20-Jun-2020].

[4] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37ś46.

[5] Wikimedia Commons. 2017. Incident documentation/20170118-Labs. https:
//wikitech.wikimedia.org/wiki/Incident_documentation/20170118-Labs. [Online;
accessed 27-Jan-2019].

[6] Benjamin F Crabtree and William L Miller. 1992. Doing qualitative research.. In
Annual North American Primary Care Research Group Meeting, 19th, May, 1989,
Quebec, PQ, Canada. Sage Publications, Inc.

[7] Andrew Crump and others of Foodcritic. 2011. About Foodcritic. http://www.
foodcritic.io/. [Online; accessed 20-Jun-2020].

[8] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tam-
burri. 2020. Toward a catalog of software quality metrics for infrastructure code.
Journal of Systems and Software 170 (2020), 110726. https://doi.org/10.1016/j.jss.
2020.110726

[9] Jonathan Davila. 2016. Ansible/NASA Case Study. http://szsb-gl2x.accessdomain.
com/fierce/wp-content/uploads/2016/01/NASA-Case-Study-Ansible.pdf. [On-
line; accessed 20-Jun-2020].

[10] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. Springer
London, London, 285ś311.

[11] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52ś81.

[12] Jeff Geerling. 2018. Testing your Ansible roles with Molecule. https://www.
jeffgeerling.com/blog/2018/testing-your-ansible-roles-molecule/. [Online; ac-
cessed 20-Jun-2020].

[13] Robert L Glass. 2006. Software Creativity 2.0. developer.* Books.
[14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory

study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. 345ś355.

[15] TFLinter Opensource Group. [n.d.]. tflint Github Repo. https://github.com/
terraform-linters/tflint. [Online; accessed 20-Jun-2020].

[16] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. 2019. Adoption,
Support, and Challenges of Infrastructure-as-Code: Insights from Industry. In
2019 IEEE International Conference on SoftwareMaintenance and Evolution (ICSME).
580ś589.

[17] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. SIGPLAN Not. 51,
10 (Oct. 2016), 328ś343. https://doi.org/10.1145/3022671.2984000

[18] Krekel Holger et al. 2004. pytest: helps you write better programs. https://docs.
pytest.org/en/stable/. [Online; accessed 20-Jun-2020].

[19] Sally Hopewell, Mike Clarke, and SueMallett. 2005. Grey literature and systematic
reviews. Publication bias in meta-analysis: Prevention, assessment and adjustments
(2005), 49ś72.

[20] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-
leases Through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley

Professional.
[21] Waldemar Hummer, Florian Rosenberg, Fabio Oliveira, and Tamar Eilam. 2013.

Automated testing of chef automation scripts. In Proceedings Demo & Poster Track
of ACM/IFIP/USENIX International Middleware Conference. 1ś2.

[22] Waldemar Hummer, Florian Rosenberg, Fabio Oliveira, and Eilam Tamar. 2013.
Testing idempotence for infrastructure as code. InACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer, 368ś388.

[23] Katsuhiko Ikeshita, Fuyuki Ishikawa, and Shinichi Honiden. 2017. Test suite
reduction in idempotence testing of infrastructure as code. In International Con-
ference on Tests and Proofs. Springer, 98ś115.

[24] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159ś174. http:
//www.jstor.org/stable/2529310

[25] Kief Morris. 2016. Infrastructure as code: managing servers in the cloud. " O’Reilly
Media, Inc.".

[26] Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. 2020. Gang of
Eight: A Defect Taxonomy for Infrastructure As Code Scripts. In Proceedings of the
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). to appear, pre-print: https://akondrahman.github.io/papers/icse20_acid.pdf.

[27] Akond Rahman, Effat Farhana, and LaurieWilliams. 2020. The ’as Code’ Activities:
Development Anti-patterns for Infrastructure as Code. Empirical Softw. Engg.
(2020), 43. https://doi.org/10.1007/s10664-020-09841-8 to appear, pre-print:
https://arxiv.org/pdf/2006.00177.pdf.

[28] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2018. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology (2018). https://doi.org/10.1016/j.infsof.2018.12.004

[29] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security
smells in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 164ś175.

[30] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie Williams. 2018. What
Questions Do Programmers Ask About Configuration As Code?. In Proceedings
of the 4th International Workshop on Rapid Continuous Software Engineering
(Gothenburg, Sweden) (RCoSE ’18). ACM, New York, NY, USA, 16ś22. https:
//doi.org/10.1145/3194760.3194769

[31] Akond Rahman, Md. Rayhanur Rahman, Chris Parnin, and Laurie Williams.
2020. Security Smells in Ansible and Chef Scripts: A Replication Study.
ACM Trans. Softw. Eng. Methodol. (2020), 31. To appear. pre-print:
https://arxiv.org/pdf/1907.07159.pdf.

[32] Akond Rahman and Laurie Williams. 2018. Characterizing Defective Config-
uration Scripts Used for Continuous Deployment. In 2018 IEEE 11th Interna-
tional Conference on Software Testing, Verification and Validation (ICST). 34ś45.
https://doi.org/10.1109/ICST.2018.00014

[33] Akond Ashfaque Ur Rahman, Eric Helms, LaurieWilliams, and Chris Parnin. 2015.
Synthesizing continuous deployment practices used in software development. In
2015 Agile Conference. IEEE, 1ś10.

[34] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[35] David Schmitt. 2016. Hitchhiker’s guide to testing infrastructure as/and

code Ð don’t panic! https://puppet.com/blog/hitchhikers-guide-to-testing-
infrastructure-as-and-code/. [Online; accessed 20-Jun-2020].

[36] Julian Schwarz. 2017. Code Smell Detection in Infrastructure as Code. https:
//www.swc.rwth-aachen.de/thesis/code-smell-detection-infrastructure-code/.
[Online; accessed 02-July-2019].

[37] S. Shamim, F. Bhuiyan, and A. Rahman. 2020. In 2020 IEEE Cybersecurity Devel-
opment (SecDev). to appear, pre-print: https://arxiv.org/pdf/2006.15275.pdf.

[38] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference
on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY,
USA, 189ś200. https://doi.org/10.1145/2901739.2901761

[39] Will Thames and others of Redhat. 2018. Ansible Lint Documentation. https:
//docs.ansible.com/ansible-lint/. [Online; accessed 20-Jun-2020].

[40] James Turnbull. 2007. Pulling Strings with Puppet: Automated System Administra-
tion Done Right. Apress.

[41] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Software Security in
DevOps: Synthesizing Practitioners’ Perceptions and Practices. In Proceedings of
the International Workshop on Continuous Software Evolution and Delivery (Austin,
Texas) (CSED ’16). ACM, New York, NY, USA, 70ś76. https://doi.org/10.1145/
2896941.2896946

[42] Eduard van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. 2018.
How good is your puppet? An empirically defined and validated quality model
for puppet. In 2018 IEEE 25th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER). 164ś174. https://doi.org/10.1109/SANER.2018.
8330206

[43] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. 1ś10.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Empirical Study
	3.1 Methodology
	3.2 Results

	4 Implications
	5 Conclusion
	Acknowledgments
	References

