This is the accepted version of the paper. The final version will appear in the proceedings of FLAIRS'2020

Assessing Modality Selection Heuristics
to Improve Multimodal Deep Learning for Malware Detection

Farzana Ahamed Bhuiyan, Katherine E. Brown,
Md Bulbul Sharif, Quentin D Johnson, Douglas A. Talbert
{fbhuiyan42, kebrown42, msharif42, qdjohnson42 } @students.tntech.edu, {dtalbert} @tntech.edu
Department of Computer Science, Tennessee Technological University, Cookeville, TN 38501

Abstract

With the growing use of Android devices, security threats
are also increasing. While there are some existing malware
detection methods, cybercriminals continue to develop ways
to evade these security mechanisms. Thus, malware detec-
tion systems also need to evolve to meet this challenge. This
work is a step towards achieving that goal. Malware detec-
tion methods need as much information as possible about the
potential malware, and a multimodal approach can help in
this regard by combining different aspects of an Android ap-
plication. Multiple modalities can improve classification by
providing complementary information, however, the use of
all available modalities does not necessarily maximize algo-
rithm performance. Thus, multimodal machine learning could
benefit from a mechanism to guide the selection of modalities
to include in a multimodal model. This work uses a malware
detection problem to compare multiple heuristics for this se-
lection process and the assumptions behind them. Our experi-
ments show that selecting modalities with low predictive cor-
relation works better than the other examined heuristics.

Introduction

Modality refers to the way something occurs or is experi-
enced, and when it involves various such modalities, a re-
search problem is described as multimodal (Ramachandram
and Taylor 2017). Observing multiple modalities together
could enable better identification of the true intent and capa-
bilities of an application and can provide a malware detector
with capabilities beyond what is achievable by any single
modality alone. For our purpose, we will let our model au-
tomatically learn patterns behind various malware apps. For
these types of tasks, deep learning has proven to be useful
(Liu et al. 2018).

Though the main goal is to enable all the modalities to
interact and inform each other, the incorporation of all these
modalities could result in a detrimental performance of the
algorithm (Ramachandram and Taylor 2017). We might find
a less complex model with fewer modalities that performs
at least as well or better than the model with all the modal-
ities. Here, the challenge lies in deciding which modalities

Copyright (©) 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

434

to fuse. In this case, some techniques for modality selection
may come in handy. To find the set of modalities that gives
us the best performing models, we can exhaustively eval-
uate all the different combinations of modalities and com-
pare them. If, however, we have many modalities, this type
of exhaustive approach will be inefficient and, perhaps, in-
feasible. In such a case, some kind of heuristic to guide an
approximate search for modality selection could be bene-
ficial. We have come up with three different heuristic ap-
proaches for modality selection and compare them to find
which among them most effectively guides us to the best
set of modalities that, when fused, leads to best the perfor-
mance.

The specific goal of this work is to assess several heuris-
tic approaches for modality selection, with Android malware
detection providing the experimental domain. We have col-
lected our dataset following a similar fashion as in (Kim et
al. 2018). The following are the main contributions of this
paper - 1) We collected data from various modalities for
Android devices which allowed us to develop a multimodal
malware detection approach, which was not widely explored
by previous works. 2) To our knowledge, none of the prior
works did any type of modality selection for malware anal-
ysis, which is explored in this paper.

Related Work

There has been some work on malware classification us-
ing deep neural networks (Linda, Vollmer, and Manic 2009;
Mohammadpour et al. 2018). However, most of the exist-
ing approaches are unimodal, focusing on feature selection
(Javaid et al. 2016; Salama et al. 2011), not modality selec-
tion, whereas we are more interested in a multimodal ap-
proach. The most related work to us is (Kim et al. 2018).
They have developed a multimodal deep learning method
for malware classification. In their work, they used all the
available modalities but they have not done any rigorous ex-
periment to show why they chose all the modalities. None
of the prior work tried to do any type of modality selec-
tion, whereas we have proposed three heuristic methods for
modality selection to reduce our model costs while improv-
ing performance.

Table 1: Configuration of our Multimodal Neural Network with just two modalities

Layers Input Shape Output Shape | Number of Units | Activation Function
Input (None, 39512) (None, 39512) 39512 RelLLU
Hidden (None, 39512) (None, 2000) 2000 RelLU
Hidden (None, 2000) (None, 1000) 1000 RelLU
Merge | [(None, 1000),(None, 1000)] | (None, 2000) 2000 RelLU
Hidden (None, 2000) (None, 100) 100 RelLU
Hidden (None, 100) (None, 10) 10 RelLU
Output (None, 10) (None, 1) 1 Sigmoid
Data Preparation
The use of multimodal data is an active area of research.
However, to our knowledge, there are still not enough mul-
timodal datasets for malware detection available (Kim et al.
2018). We believe a much better malware classifier can be
built using a good multimodal dataset. Therefore, we built a
labeled multimodal dataset for malware analysis for Android
deViCCS. | Modality 1 | Modality 2 | | Modality 3 ‘ | Modality 4 | ‘ Modality 5 ‘

We have collected Android APK files for both benign and
malware samples. We then extracted the raw data to make
the Android APK files interpretable. We first unzipped the
APK files and extracted the manifest, dex, and the shared
library files. Then these files were disassembled. APKTool
(Ryszard Wisniewski 2019) was used for disassembling the
manifest and dex files, respectively and the shared library
files were disassembled using Ghidra (Agency 2019). Af-
ter disassembling these files, we obtained the five different
modalities: (1) the Manifest modality (items from the An-
droidManifest.xml file such as permissions, configurations,
components, and environment features); (2-4) the String
modality, the Method Opcode modality, and the Method
API modality (all obtained from the dex files); and (5) the
Shared Library Function Opcode modality (obtained from
the shared library files). The details of each of these modal-
ities can be found in (Kim et al. 2018).

After collecting the multimodal data, these datasets were
used to generate feature vectors corresponding to similari-
ties and existences of features in the multimodal dataset de-
scribed above to help distinguish between benign and ma-
licious applications. Since we have used neural networks,
we converted all the modalities to fixed-sized vectors so that
they can be fed as input to our neural network. To generate
these vectors we followed the algorithms from prior work
(Kim et al. 2018). For our experiment, we collected 2063
Android APK (Android Package Kit) samples. Among these
1257 are malware samples and 806 are benign samples. We
have used 1382 samples as our training dataset and 681 sam-
ples (33% of all the data) as our test data. From the training
dataset, 1243 samples are used for training and 139 samples
(10% of the training data) are used as our validation dataset.

Experimental Setup

Ideally, we want to fuse the optimal set of modalities to max-
imize performance measure. Instead of exhaustively trying
all subset of modalities, we have experimented with various
greedy methods that used forward step-wise selection. We

435

Figure 1: Greedy Forward Step-wise Selection

have used three different heuristics approaches for selecting
the modalities at each step - the maxDifference heuristic, the
maxSimilarity heuristic, and the maxAccuracy heuristic.

For each of these approaches, at the first stage, we have
designed separate unimodal models for each of the modali-
ties. For the five modalities, we used five different unimodal
models. The architecture of each of these models is iden-
tical (except for the size of the input layer). Every model
gives us a prediction result. Finally, we got five different
classification results from the five models. We then took the
model with the highest accuracy as our initial model. Af-
ter selecting the most accurate unimodal model, new mul-
timodal models are designed including the best model and
then additional models, added one at a time.

In our first approach, the maxDifference heuristic ap-
proach, we selected the additional model as the model with
the highest number of disagreements with the initial model.
Note that, though this second model has the highest num-
ber of disagreements, it may not be the model with the low-
est accuracy. Then we merged these two models to get a
multimodal model with just two modalities. All the detailed
parameter settings of each of the layers of our multimodal
model are summarized in Table 1. Similarly, we then con-
tinued to add modalities one by one with the already build
multimodal model. We continued until we merged all the
modalities. In the end, we have a multimodal model with
all five modalities that gives us the final classification result
(Fig: 1).

The maxSimilarity heuristic approach is essentially the
opposite of the first one. Instead of selecting the model with
the highest disagreement, we selected the one with the high-
est agreement at each step. So, after selecting the most ac-
curate unimodal model, another unimodal model is selected

Table 2: Performance Measure for Forward Selection using maxDifference Heuristic

Modality Accuracy | Precision | Recall | F-score
String + Function opcode 0.973 0.98 0.97 0.97
String + Function opcode + Manifest 0.982 0.98 0.98 0.98
String + Function opcode + Manifest + Method opcode 0.980 0.97 0.97 0.97
String + Function opcode + Manifest + Method opcode + Method API 0.959 0.96 0.96 0.96
Table 3: Performance Measure for Forward Selection using maxSimilar Heuristic
Modality Accuracy | Precision | Recall | F-score
String + Method API 0.972 0.97 0.97 0.97
String + Method API + Function opcode 0.957 0.96 0.96 0.96
String + Method API + Function opcode + Method opcode 0.847 0.75 0.81 0.77
String + Method API + Function opcode + Method opcode + Manifest 0.965 0.97 0.96 0.96
Table 4: Performance Measure for Forward Selection using maxAccurate Heuristic
Modality Accuracy | Precision | Recall | F-score
String + Manifest 0.980 0.98 0.98 0.98
String + Method opcode 0.967 0.97 0.96 0.97
String + Method API 0.975 0.98 0.97 0.97
String + Function opcode 0.965 0.97 0.96 0.97
String + Manifest + Method opcode 0.964 0.97 0.96 0.97
String + Manifest + Method API 0.976 0.97 0.97 0.97
String + Manifest + Function opcode 0.971 0.97 0.97 0.97
String + Manifest + Method API + Method opcode 0.974 0.98 0.97 0.97
String + Manifest + Method API + Function opcode 0.978 0.98 0.96 0.97
String + Manifest + Method API + Function opcode + Method opcode 0.837 0.96 0.96 0.96
1
0.95
0.9
0.85 1 (Manifest)
2 (String)

Accuracy
°
o

0.75
0.7
0.65

3 (Method opcode)
4 (Method API)
5 (Function opcode)

0.6
7R 98 ¥ 8 RS s A - 7RO TS A S T T, TR, X, XL TR, S
2N x\s\xxox&(p3 xxX”xxYx PR TR N x’xx"xxxxxx’xx’x
v il iy A e, oy @ e 0
Q@ 3 L?t?x7 Q@ 8 Sy
k4

(a) (b)

()

Figure 2: Accuracy comparison of multimodal neural networks using different combinations of modalities using three different
heuristics - (a) maxDifferernt Heuristic, (b) maxSimilar Heuristic and (c¢) maxAccurate Heuristic

that agrees the most with the classification result of the first
model. We continue selecting unimodal models in this way
until we have a multimodal model with all the modalities.

For our maxAccuracy heuristic approach, the additional
model, which together with the best model improves the per-
formance the most (classification accuracy), is selected. To
find out the additional model, we fused all the other modal-
ities with the initial one, one by one, and selected the multi-
modal model with the highest accuracy. Thus we continued
adding modalities until all modalities have been fused.

436

The ultimate goal of these procedures is a multimodal
model that represents the best combination of modalities to
accurately classify malware samples. The parameter settings
of each of the layers of our multimodal model are similar to
the one described in Table 1. However, it should be empha-
sized that the combination found may not be the absolute
best one since the first selected model, even though it is the
best from a single unimodal model point of view, may not
be the ideal one when multiple models are combined in a
more sophisticated way. This implies that, potentially, other

combinations of models could be as good as or even better
than the selected one. Since our goal is to not perform an
exhaustive search, this is an unavoidable reality.

If we have many more modalities, we could just try adding
modalities one by one until we can’t find any better perform-
ing model. If a better performing multimodal model can be
obtained, the same process is repeated once again adding
an additional modalities, one at a time, until all remaining
modes have been used. The process thus can be iteratively
repeated until no better model can be obtained.

Since we have many features for each modality, we used
GPUs to accelerate our algorithms. We used a high perfor-
mance computing cluster where each node contains two In-
tel Xeon E5-2680v4 CPUs, 128 GB RAM and an Nvidia
Tesla K40, 12 GB graphics memory. We have run each of
our models three times and took the average results.

Results

To get a detailed idea of the performance measures of each
our model, we have reported the accuracy, precision, re-
call, and F-score values. From the accuracy graph in Fig-
2, we see that the accuracy does not always increase with
an increased number of modalities. Using the maxDiffer-
ence heuristic we get the highest accuracy when we used
only three modalities - String, Manifest and Function Op-
codes (Table 2), using the maxSimilar heuristic we get the
highest accuracy when we used only two modalities - String
and Method APIs (Table 3), and finally for the maxAccu-
racy heuristic we get the highest accuracy when we used
four modalities - String, Manifest, Method APIs and method
opcodes (Table 4). By comparing all three heuristics, we
see the forward selection search using the maxDifference
heuristic worked the best for this task using the given data.
Using this heuristic we can select the best set of modali-
ties to maximize the performance measures. We also got the
highest precision, recall, and F-score for this case. Adding
the other modalities does not give us any additional infor-
mation to improve performance. We conclude that selecting
modalities with low predictive correlation works better than
the other examined heuristics. It is worth noting, however,
that maxAccuracy achieves almost as high an accuracy with
fewer modalities. If model simplicity matters, then this one
might be better. Addition experiments on more datasets are
needed to better address this issue.

Our results suggest that we do not need to combine highly
accurate unimodal models, but rather we need models that
make different kinds of errors. The idea is similar to ensem-
ble methods. High accuracy can be accomplished if differ-
ent models misclassify different training examples, even if
the unimodal classifier accuracy is low. Using this heuristic,
we reduced our modalities from five to three. This work be-
comes even more important when the number of modalities
is larger. We need not use every modality at our disposal for
creating the best model. We can assist our algorithm by feed-
ing in only those modalities that are most important. Thus
we can reduce the training time and the evaluation time as
well as the complexity of the model. In fields such as secu-
rity, even the smallest amount of improvement of machine
learning algorithms can be something truly valuable.

437

Conclusion

Performing multimodal analysis helps identify the true in-
tent and capabilities of advanced malware and can provide a
more accurate technical indicator which may not be achiev-
able by any single modalities alone. However, the inclu-
sion of every modality blindly can have a negative effect.
We proposed a heuristic method to select the most infor-
mative modalities. We got an improved overall performance
and have a simpler model with fewer connections than just
using every modality together. This method is designed to
improve the stability and accuracy of our malware detection
algorithms while reducing the overall cost.

References

Agency, N. S. 2019. Ghidra - software reverse engineering
framework.

Javaid, A.; Niyaz, Q.; Sun, W.; and Alam, M. 2016. A
deep learning approach for network intrusion detection sys-
tem. In Proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technolo-
gies (formerly BIONETICS), 21-26. 1CST (Institute for
Computer Sciences, Social-Informatics and

Kim, T.; Kang, B.; Rho, M.; Sezer, S.; and Im, E. G. 2018.
A multimodal deep learning method for android malware
detection using various features. IEEE Transactions on In-
formation Forensics and Security 14(3):773-788.

Linda, O.; Vollmer, T.; and Manic, M. 2009. Neural network
based intrusion detection system for critical infrastructures.
In 2009 international joint conference on neural networks,

1827-1834. IEEE.

Liu, K.; Li, Y.; Xu, N.; and Natarajan, P. 2018. Learn to com-
bine modalities in multimodal deep learning. arXiv preprint
arXiv:1805.11730.

Mohammadpour, L.; Ling, T. C.; Liew, C. S.; and Chong,
C. Y. 2018. A convolutional neural network for network
intrusion detection system. Proceedings of the Asia-Pacific
Advanced Network 46:50-55.

Ramachandram, D., and Taylor, G. W. 2017. Deep mul-
timodal learning: A survey on recent advances and trends.
IEEFE Signal Processing Magazine 34(6):96—-108.

Ryszard Wisniewski, C. T. 2019. Apktool, a tool for reverse
engineering android apk files.

Salama, M. A.; Eid, H. F.; Ramadan, R. A.; Darwish, A.; and
Hassanien, A. E. 2011. Hybrid intelligent intrusion detec-
tion scheme. In Soft computing in industrial applications.
Springer. 293-303.

