
Practitioner Perception of Vulnerability Discovery
Strategies

Farzana Ahamed Bhuiyan∗, Justin Murphy†, Patrick Morrison‡ and Akond Rahman§
∗†§Department of Computer Science, Tennessee Technological University, Cookeville, Tennessee, USA

‡IBM, Durham, North Carolina, USA
Email: ∗fbhuiyan42@tntech.edu, †jdmurphy43@tntech.edu, ‡pjmorris@us.ibm.com, §arahman@tntech.edu

Abstract—The fourth industrial revolution envisions industry
manufacturing systems to be software driven where mundane
manufacturing tasks can be automated. As software is perceived
as an integral part of this vision, discovering vulnerabilities is
of paramount of importance so that manufacturing systems are
secure. A categorization of vulnerability discovery strategies can
inform practitioners on how to identify undiscovered vulnera-
bilities in software. Recently researchers have investigated and
identified vulnerability discovery strategies used in open source
software (OSS) projects. The efficacy of the derived strategy
needs to be validated by obtaining feedback from practitioners.
Such feedback can be helpful to assess if identified strategies are
useful for practitioners and possible directions the derived vul-
nerability discovery strategies can be improvised. We survey 51
practitioners to assess if four vulnerability discovery strategies:
diagnostics, malicious payload construction, misconfiguration,
and pernicious execution can be used to identify undiscovered
vulnerabilities. Practitioners perceive the strategies to be useful:
for example, we observe 88% of the surveyed practitioners to
agree that diagnostics could be used to discover vulnerabilities.
Our work provides evidence of usefulness for the identified
strategies.

Index Terms—bug report, perception, survey, strategy, vulner-
ability

I. INTRODUCTION

In January 2019, a security tester disclosed four 36 year-
old vulnerabilities in the source code of secure copy protocol
(SCP) [1]. SCP is an open source software (OSS), which is
maintained by the OpenBSD organization [2]. The security
tester constructed a malicious file to discover the vulnerabili-
ties [3]. Despite the use of software engineering practices, such
as code auditing [4] and testing [2], the vulnerabilities in SCP
source code remained undiscovered. Tools that use SCP, such
as, OpenSSH 1 and Putty 2, have thousands of users and would
have not been negatively impacted if the vulnerabilities were
discovered early. The knowledge of constructing a malicious
file for vulnerability discovery might have helped OpenBSD
contributors to identify the vulnerabilities earlier, instead of a
security tester discovering them in 2019.

Knowledge related to vulnerability discovery strategy could
be of great importance to practitioners who are involved
in developing critical software systems. Understanding and
applying vulnerability discovery strategy can help practitioners
discover vulnerabilities early in software systems preventing

1https://www.openssh.com/
2https://www.putty.org/

malicious users from attacking software systems. Practitioners
perceive software to be an integral part of the fourth industrial
revolution, and latent vulnerabilities in software can provide
malicious users to conduct large-scale cybersecurity attacks.

In recent work, Bhuiyan et al. [5] investigated vulnerability
discovery strategies used in OSS projects. They identified four
vulnerability discovery strategies: diagnostics, malicious pay-
load construction, misconfiguration, and pernicious execution.
They reported the frequency of the identified vulnerability
discovery strategies used in OSS. One limitation of their work
is validation with practitioners: they did not synthesize prac-
titioners perceptions of the identified strategies. Addressing
such limitation is important as practitioner agreement with
the identified strategies can provide validation and evidence of
usefulness for the identified strategies. Practitioner disagree-
ments can reveal for which reasons identified strategies may
not work and how research conducted by Bhuiyan et al. [5]
can be improved by considering practitioner context.

We answer the following research question: RQ: How do
practitioners perceive the identified vulnerability discovery
strategies?

We conduct a survey with 51 practitioners to assess if
practitioners perceive the identified strategies to be helpful in
identifying undiscovered vulnerabilities. Our contribution is a
survey of how practitioners perceive the identified vulnerabil-
ity discovery strategies (Section III).

We organize the rest of the paper as follows: we describe the
methodology and results respectively, in Sections II and III.
We discuss our findings and implications in Section IV. We
discuss related work in Section V and conclude the paper in
Section VI.

II. METHODOLOGY

Bhuiyan et al. [5] did qualitative analysis on the text content
of OSS bug reports available from the Mozilla organization.
They identified 312 bug reports that describe what strategies
security testers applied to discover the vulnerability using
some filtering criteria. They used open coding [6] on the
content of bug reports, including comments, attachments,
and description and identified four vulnerability discovery
strategies. They used five datasets to report the frequency of
the identified strategies. Using the metric ‘PropVuln’, they
quantified the proportion of vulnerabilities that were identified
using each strategy.

This is the submitted version of the paper in the proceedings of EnCyCriS'2021



TABLE I
NAME AND DEFINITION OF EACH STRATEGIES ALONG WITH PROPORTION OF VULNERABILITIES DISCOVERED BY EACH STRATEGY. HIGHLIGHTED

CELLS IN GREEN INDICATE THE MOST FREQUENTLY OCCURRING STRATEGY FOR A DATASET.

Strategy Definition Frequency
Chrome Eclipse Mozilla OpenStack PHP

Diagnostics The strategy of inspecting software source code or
software logs to discover vulnerabilities.

10.0% 62.9% 13.4% 52.1% 15.3%

Misconfig The strategy of identifying and altering one or
multiple configurations of the software to discover
vulnerabilities.

0.8% 8.5% 2.7% 29.4% 17.7%

Payload The strategy of constructing a malicious software
artifact to discover a vulnerability.

86.5% 25.7% 83.2% 16.8% 89.5%

Execution The strategy of identifying a sequence of software
interactions that expose a vulnerability.

2.7% 5.7% 6.8% 4.2% 1.6%

We report the name and definition of the four identified
strategies and their ‘PropVuln’ values for the four strategies as
reported in [5] in Table I. The columns ‘Diagnostics’, ‘Miscon-
fig’, ‘Payload’, and ‘Execution’ respectively, present the four
strategies: diagnostics, misconfiguration, malicious payload
construction, and pernicious execution. Except for Eclipse and
OpenStack, we observe malicious payload construction to be
the most frequent vulnerability discovery strategy. For Eclipse
and OpenStack, the most frequently occurring strategy is diag-
nostics. For Eclipse and OpenStack, respectively, 62.9% and
52.1% of the vulnerabilities are discovered using diagnostics.

We answer our RQ by conducting an online survey with
practitioners. In the survey, we first ask practitioners about
their experience in software engineering. Next, we ask how
long they have been involved in discovering vulnerabilities
in software projects. Then, we ask “We have identified four
strategies to discover vulnerabilities in software by looking at
bug reports from open source software. Each of these strategies
is listed below. To which extent do you agree that each of
our strategies could help you to identify an undiscovered
vulnerability?”. We construct the survey following Kitchen-
ham and Pfleeger’s guidelines [7]: (i) use Likert scale to
measure agreement levels: strongly disagree, disagree, neutral,
agree, and strongly agree; (ii) add explanations related to the
purpose of the study, how to conduct the survey, preservation
of confidentiality, and an estimate of completion time; and
(iii) conduct a pilot survey to get initial feedback. From the
feedback of the pilot survey, we add an open-ended text box
so that survey respondents can provide more context including
feedback on the reasons they agreed or disagreed. We include
the survey questionnaire in our verifiability package [8].

We deploy the survey using e-mails. We use two sources:
first, we use a mailing list maintained by a university-affiliated
organization, which is involved in vulnerability finding initia-
tives, such as ‘capture the flag’ and ‘bug bounty’ programs.
The mailing list includes e-mail addresses of 153 practitioners.
Second, we use 1,025 unique e-mail addresses from our
collection of bug reports from Chrome, Eclipse, Openstack,
and PHP. We select 300 from the set of 1,178 e-mail addresses
by applying stratified sampling [9], [10]. In stratified sampling,
samples are randomly selected from each group within the
population so that the constructed random sample reflects

the same proportionate distribution of each group [9], [10].
The sample includes 30 e-mail addresses from the university-
affiliated mailing list and 270 e-mail addresses from the OSS
bug reports. Our assumption is that by collecting responses
from practitioners who are involved in the vulnerability dis-
covery process either in the industry or outside the industry,
we can assess the relevance of our identified strategies.

We offer a drawing of two 50 USD Amazon gift cards as
an incentive for participation following Smith et al. [11]’s
recommendations. We conduct the survey from January 10,
2020 to November 15, 2020 following the Internal Review
Board (IRB) protocol#2242.
Limitation: Our survey is subject to internal validity as
we might have used phrases in the survey that could be
ambiguous to survey participants. We mitigate this limitation
by conducting a pilot study with a volunteer. The volunteer
reported not to face any issues related to comprehension,
ambiguity, or readability.

III. RESULTS

We summarize survey results in Figure 1, where the strate-
gies are sorted from top to bottom based on the agreement
rate. The percentage of survey respondents who agreed or
strongly agreed with each category is listed on the right. The
agreement rate is 88%, 80%, 76%, and 75% respectively, for
diagnostics, misconfiguration, malicious payload construction,
and pernicious execution. Of the 300 practitioners, 51 prac-
titioners responded to the survey. We observe the median
reported experience in software engineering to be 4 years
(min=1 year, max=30 years). Surveyed practitioners reported
a median of 2 years of experience in vulnerability discovery
(min=1 year, max=20 years).

2%

6%

6%

2%

88%

80%

76%

75%

10%

14%

18%

24%EXECUTION

PAYLOAD

MISCONFIG

DIAGNOSTICS

0 25 50 75 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 1. Findings from survey. The most agreed upon strategy is diagnostics.



The survey respondents also provided comments on why
they agreed, disagreed, or remained neutral. One survey
respondent agreed with all identified strategies stating “I
have seen all of them work before and they are effective
at finding vulnerabilities”. One respondent expressed a lack
of experience in malicious payload construction saying “I
don’t know how much impact a malicious payload has, but
it sounds like it’s important so I put neutral”. One respondent
disagreed with malicious payload construction stating the strat-
egy to be“situationally beneficial”. The respondent perceived
the success of finding vulnerabilities using malicious payload
construction to be dependent on developer mistakes in source
code. Another respondent suggested that other strategies may
exist, which are not included in our list: “There may be more
strategies added as we go on identifying more and more
CVEs”.

IV. DISCUSSION

Despite disagreements we observe an overall agreement
from the surveyed practitioners for all the identified strategies.
We observe an agreement rate of >= 75% for all the identified
strategies. Our survey results provide further practitioner vali-
dation to the strategies identified by Bhuiyan et al. [5]. Results
presented in Figure 1 provide evidence that practitioners who
are interested in early discovery of vulnerabilities can leverage
the four strategies to identify latent vulnerabilities.

Srikanth and Menzies [12] stated “Documenting developer
beliefs should be the start, not the end, of software engineering
research. Once prevalent beliefs are found, they should be
checked against real-world data”, suggesting software engi-
neering researchers to complement practitioner survey data
with software repository data. We have complemented prac-
titioner survey results with strategy frequency results mined
from OSS bug reports in Bhuiyan et al. [5]. We observe
congruence: diagnostics is the most agreed-upon strategy, and
also the most frequently occurring strategy for Eclipse and
OpenStack.

We also observe practitioner responses to be rooted in
personal beliefs and experiences, which has previously been
documented for software quality research [13]. For example,
in Section III we observe a practitioner to express skepticism
about malicious payload construction. Skeptic practitioners
might benefit from more details such as definitions, examples,
and subcategories related to malicious payload construction
and how frequently the strategy is used in software projects.
Practitioners often prefer to learn through the experiences
of their peers i.e., other practitioners working in the same
domain [14]–[16]. We advocate practitioners who are inexpe-
rienced in vulnerability discovery to learn from the presented
results in our paper as survey results how the strategies are
validated and our results are a synthesis of strategies used by
security testers.

Ethical Disclosure of Vulnerabilities: Disclosure of software
vulnerabilities have a negative impact on a software product’s
economic value [17]. Regardless of what strategy is being
used, if a new vulnerability is discovered, then practitioners

must follow the best practices when reporting the vulnerability.
Practitioners may learn from existing vulnerability reporting
philosophies used by IT organizations [18]–[20] that include
(i) mutual agreement on vulnerability disclosure dates, and (ii)
not attempting to access project or user data that may result
from the vulnerability exploit.

V. RELATED WORK

Our paper is related to software engineering research that
has used bug reports for vulnerability analysis and has focused
on security testers. Researchers have used OSS bug reports
to characterize and identify software vulnerabilities. Shin and
Williams [21] mined Mozilla bug reports to construct fault
prediction models and reported that the models could be
used to predict vulnerable source code files automatically.
In another work, Zhe et al. [22] mined Mozilla bug reports
to construct vulnerability datasets, and applied active learn-
ing to improve vulnerability detection efficiency. Researchers
have also applied qualitative analysis to characterize software
vulnerabilities. Linares-Vasquez et al. [23] applied qualitative
analysis on Android bug reports and identified the ‘Linux
Kernel’ component of Android to contain 46% of the studied
634 vulnerabilities. Using bug reports Santos et al. [24]
identified 44 root causes for architectural vulnerabilities in
three software projects. Prior research has also focused on
security testers i.e., practitioners who discover software vul-
nerabilities. Smith et al. [25] observed security testers to
face barriers when using static analysis tools for vulnerability
discovery. Rahman and Williams [26] studied the knowledge
needs of inexperienced security testers and observed limited
availability of resources to discover software vulnerabilities.
Ceccato et al. [27] modeled behaviors of security testers on
how they diagnose source code to find vulnerabilities. Munaiah
et al. [28] studied system call logs from a Capture the Flag
competition and observed security testers to perform a set
of computational activities in chronological order. Votipka et
al. [29] interviewed software testers and security testers and
reported that even though software and security testers perform
the same computational and cognitive processes, the outcome
is different for software testers compared to that of security
testers. Fang and Hafiz [30] studied vulnerability reporting
practices using a survey with 58 security testers and observed
security testers to not collaborate with software vendors when
reporting buffer overflow vulnerabilities. The research paper
closest in spirit to our paper is research conducted by Bhuiyan
et al. [5] who investigated vulnerability discovery strategies
used in OSS projects and reported four vulnerability discovery
strategies along with their frequency in OSS projects.

Our discussion above highlights a lack of research that
studies practitioner perception on research related to vulner-
ability discovery strategies in the OSS domain. We address
this research gap by conducting a survey of how practitioners
perceive vulnerability discovery strategies.



VI. CONCLUSION

Bringing the fourth industrial revolution into reality will
require secure development of software that is being used in
industrial automation systems. Software is an integral part of
the the fourth industrial revolution and latent vulnerabilities in
software can provide malicious users to conduct cybersecurity
attacks. While researchers have derived strategies to discover
vulnerabilities, how practitioners perceive the identified strate-
gies remain under explored. We conduct a survey with 51
practitioners to assess if previously identified four strategies
have relevance to practitioners. From our survey, the most
and least agreed upon strategy is, respectively, diagnostics and
pernicious execution. We hope our paper will facilitate further
research in the domain of vulnerability discovery.

ACKNOWLEDGEMENT

We thank the PASER group at Tennessee Technological
University for their valuable feedback. We also thank the
anonymous practitioners for participating in our survey. The
research was partially funded by the National Science Foun-
dation (NSF) NSF award # 2026869.

REFERENCES

[1] C. Cimpanu, “Scp implementations impacted by 36-
years-old security flaws,” https://www.zdnet.com/article/
scp-implementations-impacted-by-36-years-old-security-flaws/, 2019,
[Online; accessed 14-Jan-2020].

[2] OpenBSD, “Openbsd ports - testing guide,” https://www.openbsd.org/
faq/ports/testing.html, 2020, [Online; accessed 21-Feb-2020].

[3] H. Sintonen, “https://sintonen.fi/advisories/scp-client-
multiple-vulnerabilities.txt,” https://sintonen.fi/advisories/
scp-client-multiple-vulnerabilities.txt, 2019, [Online; accessed 27-
Jan-2020].

[4] OpenBSD, “Openbsd:security,” https://www.openbsd.org/security.html,
2020, [Online; accessed 21-Feb-2020].

[5] F. A. Bhuiyan, A. Rahman, and P. Morrison, “Vulnerability discovery
strategies used in software projects,” in 35th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW’20).
IEEE, 2020.

[6] J. Saldana, The coding manual for qualitative researchers. Sage, 2015.
[7] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys.

London: Springer London, 2008, pp. 63–92. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5\ 3

[8] A. Authors, “Verifiability package for paper,” https://figshare.com/s/
eaac5aeea283239f2c56, 2020, [Online; accessed 05-Mar-2020].

[9] M. N. Marshall, “Sampling for qualitative research,” Family Practice,
vol. 13, no. 6, pp. 522–526, 12 1996. [Online]. Available:
https://doi.org/10.1093/fampra/13.6.522

[10] M. D. Kaplowitz, T. D. Hadlock, and R. Levine, “A Comparison of
Web and Mail Survey Response Rates,” Public Opinion Quarterly,
vol. 68, no. 1, pp. 94–101, 03 2004. [Online]. Available: https:
//doi.org/10.1093/poq/nfh006

[11] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), May 2013, pp. 89–92.

[12] S. N. C. and T. Menzies, “Assessing developer beliefs: A reply
to ”perceptions, expectations, and challenges in defect prediction”,”
CoRR, vol. abs/1904.05794, 2019. [Online]. Available: http://arxiv.org/
abs/1904.05794

[13] P. Devanbu, T. Zimmermann, and C. Bird, “Belief and evidence
in empirical software engineering,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
ACM, 2016, pp. 108–119. [Online]. Available: http://doi.acm.org/10.
1145/2884781.2884812

[14] G. A. Moore and R. McKenna, “Crossing the chasm,” 1999.
[15] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, “Synthesizing

continuous deployment practices used in software development,”
in Proceedings of the 2015 Agile Conference, ser. AGILE ’15.
USA: IEEE Computer Society, 2015, p. 1–10. [Online]. Available:
https://doi.org/10.1109/Agile.2015.12

[16] E. Murphy-Hill and G. C. Murphy, “Peer interaction effectively,
yet infrequently, enables programmers to discover new tools,” in
Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work, ser. CSCW ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 405–414. [Online]. Available:
https://doi.org/10.1145/1958824.1958888

[17] R. Telang and S. Wattal, “An empirical analysis of the impact of software
vulnerability announcements on firm stock price,” IEEE Transactions on
Software Engineering, vol. 33, no. 8, pp. 544–557, Aug 2007.

[18] Lookout, “Responsible disclosure,” https://www.lookout.com/legal/
responsible-disclosure, 2020, [Online; accessed 19-Feb-2020].

[19] H. One, “Vulnerability disclosure guidelines,” https://www.hackerone.
com/disclosure-guidelines, 2020, [Online; accessed 02-Feb-2020].

[20] G. A. Security, “How google handles security vulnerabilities,” https:
//www.google.com/about/appsecurity/, 2020, [Online; accessed 01-Feb-
2020].

[21] Y. Shin and L. Williams, “Can traditional fault prediction models be
used for vulnerability prediction?” Empirical Software Engineering,
vol. 18, no. 1, pp. 25–59, Feb 2013. [Online]. Available: https:
//doi.org/10.1007/s10664-011-9190-8

[22] Z. Yu, C. Theisen, L. Williams, and T. Menzies, “Improving vulnera-
bility inspection efficiency using active learning,” IEEE Transactions on
Software Engineering, pp. 1–1, 2019.

[23] M. Linares-Vasquez, G. Bavota, and C. Escobar-Velasquez, “An
empirical study on android-related vulnerabilities,” in Proceedings of
the 14th International Conference on Mining Software Repositories,
ser. MSR ’17. IEEE Press, 2017, p. 2–13. [Online]. Available:
https://doi.org/10.1109/MSR.2017.60

[24] J. C. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster,
“An empirical study of tactical vulnerabilities,” Journal of Systems
and Software, vol. 149, pp. 263 – 284, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302322

[25] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R.
Lipford, “Questions developers ask while diagnosing potential security
vulnerabilities with static analysis,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2015. New York, NY, USA: Association for Computing Machinery,
2015, p. 248–259. [Online]. Available: https://doi.org/10.1145/2786805.
2786812

[26] A. Rahman and L. Williams, “A bird’s eye view of knowledge needs
related to penetration testing,” in Proceedings of the 6th Annual
Symposium on Hot Topics in the Science of Security, ser. HotSoS ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3314058.3317294

[27] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Falcarin,
and M. Torchiano, “How professional hackers understand protected code
while performing attack tasks,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 154–
164.

[28] N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely,
“Characterizing attacker behavior in a cybersecurity penetration testing
competition,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Sep. 2019, pp. 1–6.

[29] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers
vs. testers: A comparison of software vulnerability discovery processes,”
in 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.
374–391.

[30] M. Fang and M. Hafiz, “Discovering buffer overflow vulnerabilities in
the wild: An empirical study,” in Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’14. New York, NY, USA: Association
for Computing Machinery, 2014. [Online]. Available: https://doi.org/10.
1145/2652524.2652533


