
Vulnerability Discovery Strategies Used in Software Projects
Farzana Ahamed Bhuiyan

Akond Rahman
fbhuiyan42@tntech.edu
arahman@tntech.edu

Department of Computer Science
Cookeville, Tennessee, USA

Patrick Morrison
IBM

Durham, North Carolina, USA
pjmorris@us.ibm.com

ABSTRACT
Malicious users can exploit undiscovered software vulnerabilities
i.e., undiscovered weaknesses in software, to cause serious conse-
quences, such as large-scale data breaches. A systematic approach
that synthesizes strategies used by security testers can aid practi-
tioners to identify latent vulnerabilities. The goal of this paper is
to help practitioners identify software vulnerabilities by categorizing
vulnerability discovery strategies using open source software bug re-
ports. We categorize vulnerability discovery strategies by applying
qualitative analysis on 312 OSS bug reports. Next, we quantify the
frequency and evolution of the identified strategies by analyzing
1,632 OSS bug reports collected from five software projects span-
ning across 2009 to 2019. The five software projects are Chrome,
Eclipse, Mozilla, OpenStack, and PHP.

We identify four vulnerability discovery strategies: diagnos-
tics, malicious payload construction, misconfiguration, and per-
nicious execution. For Eclipse and OpenStack, the most frequently
used strategy is diagnostics, where security testers inspect source
code and build/debug logs. For three web-related software projects
namely, Chrome, Mozilla, and PHP, the most frequently occurring
strategy is malicious payload construction i.e., creating malicious
files, such as malicious certificates and malicious videos.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
bug report, empirical study, strategy, taxonomy, vulnerability

ACM Reference Format:
Farzana Ahamed Bhuiyan, Akond Rahman, and Patrick Morrison. 2020. Vul-
nerability Discovery Strategies Used in Software Projects. In 35th IEEE/ACM
International Conference on Automated Software Engineering Workshops
(ASEW ’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3417113.3422153

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HCSE&CS-2020, September, 2020,
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8128-4/20/09. . . $15.00
https://doi.org/10.1145/3417113.3422153

1 INTRODUCTION
Discovering latent vulnerabilities is vital for secure software devel-
opment. Vulnerability discovery is a human-centric activity, where
the security tester applies security knowledge to identify vulnerabil-
ities. Unfortunately, information technology (IT) organizations may
not have the expertise of security testers, potentially prohibiting
them to identify latent vulnerabilities in their software. A systematic
synthesis of the vulnerability discovery strategies can help practi-
tioners in identifying latent software vulnerabilities. Practitioners
have acknowledged the importance of synthesizing knowledge
related to vulnerability discovery and advocated for inculcating
such knowledge into the software development process [14, 25].
On online forums, such as Reddit, we observe practitioners ask
about strategies that security testers perform: “In our team we are
planning to pro-actively find vulnerabilities in our legacy software
products. We don’t have expert security testers in our team who have
the knowledge to discover vulnerabilities. What strategies are typi-
cally used to find software vulnerabilities? Are there categories?” [23].
Researchers [30, 42] also have advocated for synthesizing vulnera-
bility discovery strategies, so that inexperienced practitioners are
well-equipped to identify undiscovered vulnerabilities.

We hypothesize that by systematically analyzing OSS bug re-
ports, we can derive a list of vulnerability discovery strategies used
by security testers. OSS bug reports contain information on how
bugs are discovered in OSS development [31]. Practitioners can
learn from a synthesis of OSS bug reports that include information
on how a vulnerability was discovered.

The goal of this paper is to help practitioners identify software
vulnerabilities by categorizing vulnerability discovery strategies using
open source software bug reports.

We answer the following research questions:

• RQ1 [Categorization]: What vulnerability discovery strategies
are used by security testers in open source software?

• RQ2 [Frequency]: How frequently are the identified vulnerability
discovery strategies used in open source software?

We derive vulnerability discovery strategies using open cod-
ing [43] on 312 OSS bug reports collected from the Mozilla or-
ganization. Next, we apply closed coding [12] to determine the
frequency of the identified strategies in 1,632 bug reports collected
from five OSS projects.

We list our contributions as follows:

• A categorization of vulnerability discovery strategies used in
OSS; and

• An empirical study that quantifies the frequency and evolution
of the identified vulnerability discovery strategies in OSS.

This is the accepted version of the paper. The final version will appear in the proceedings of ASEW'2020

https://doi.org/10.1145/3417113.3422153
https://doi.org/10.1145/3417113.3422153

HCSE&CS-2020, September, 2020,
Bhuiyan et al.

2 RELATEDWORK
Researchers have used OSS bug reports to characterize and identify
software vulnerabilities. Prediction model-based vulnerability de-
tection research is prevalent. Shin and Williams [44] mined Mozilla
bug reports to construct fault prediction models and reported that
the models can be used to automatically predict vulnerable source
code files. Wijayasekara et al. [49] mined text features from Linux
bug reports to automatically detect vulnerabilities that appear in
Linux. In another work, Zimmermann et al. [55] used bug reports
from Windows Vista and constructed vulnerability prediction mod-
els (VPMs) with code metrics, such as churn, along with organiza-
tional hierarchy metrics. They [55] observed the median precision
and recall to respectively be 0.6 and 0.4. Zhe et al. [54] minedMozilla
bug reports to construct vulnerability datasets, and applied active
learning to improve vulnerability detection efficiency. Using active
learning they identified 99% of the vulnerabilities by inspecting 34%
of 28,750 source code files.

We notice a lack of research related to vulnerability discovery
strategies as prior work has focused on vulnerability metrics, pre-
diction, and resolution. We address this research gap by conducting
a qualitative analysis of OSS bug reports to identify vulnerability
discovery strategies.

3 RQ1: CATEGORIZATION OF
VULNERABILITY DISCOVERY STRATEGIES

In this section, we answer RQ1:What vulnerability discovery strate-
gies are used by security testers in open source software? First, we
provide the methodology to answer RQ1 in Section 3.1. Then, we
provide our findings in Section 3.2.

3.1 Methodology to Answer RQ1
Our methodology involves two steps: bug report collection and
qualitative analysis. We describe these two steps as following:

3.1.1 Bug Report Collection. We answer RQ1 by applying a qual-
itative analysis on the text content of OSS bug reports available
from the Mozilla organization. We select Mozilla as the Mozilla
organization has a wide range of OSS projects namely Firefox, Sea-
Monkey, Bugzilla, and Thunderbird 1. We use the Mozilla Bugzilla
API [34] to download necessary bug reports.

We apply filtering criteria to identify bug reports that describe
what strategies security testers applied to discover the vulnerability:
• Criterion-1: We search for the keyword ‘cve’ in the title, descrip-
tion, and comments for each collected bug report. We use ‘cve’,
as vulnerabilities in the National Vulnerability Database (NVD)
are indexed using the ‘CVE’ identifier 2. Practitioners mislabel
security bugs [24, 27]. Label-based filtering of bug reports for
bug/vulnerability identification can bias research results [26, 28],
which motivated us to apply CVE-based filtering.

• Criterion-2: We manually examine if a bug report actually is
related to a vulnerability indexed by NVD.

• Criterion-3: The bug report describes steps on how the vulnera-
bility was discovered.

1http://kb.mozillazine.org/Summary_of_Mozilla_products
2https://nvd.nist.gov/vuln

The first author manually examined if all three criteria are sat-
isfied for the collected bug reports. Altogether, we obtain 312 bug
reports as of March 2019.

3.1.2 Qualitative Analysis. For qualitative analysis, we use open
coding, where a rater observes and synthesizes patterns within
unstructured text [43]. We apply open coding on the content of bug
reports, which includes comments, attachments, and descriptions.
We select open coding because we can obtain detailed information
on what strategies security testers used to discover vulnerabilities
by inspecting bug report content.

The first and second authors, individually, conduct an open cod-
ing process on the bug reports collected from Section 3.1.1. The
first and second author respectively has three and eight years of
experience in software security.

3.1.3 Rater Agreement. : We record the agreement rate between
the first and second author for the identified vulnerability discovery
strategies. We record Cohen’s Kappa [11], and interpret Cohen’s
Kappa using Landis and Koch’s interpretation [29].

3.2 Answer to RQ1
First, we describe the vulnerability discovery strategies. Second, we
provide details on rater agreement.

Our categorization includes four vulnerability discovery strate-
gies. We describe each strategy with definitions, examples, and
related MITRE ATT&CK techniques in the following subsections.

3.2.1 Diagnostics. The strategy of inspecting software source code
or software logs to discover vulnerabilities. During the inspection
process, the security testers apply their knowledge and inspect for
patterns that are indicative of security weaknesses in the software.
This strategy includes two sub-categories namely, diagnosis of
software source code and diagnosis of software logs:

Software source code: We observe security testers to diagnose
source code to discover vulnerabilities. The diagnosis of source code
can be done manually or automatically by using static analysis
tools. When diagnosing source code security testers search for
security weaknesses, such as insecure coding patterns and incorrect
implementations of cryptography algorithms.

Example: A security tester discovered a vulnerability (CVE-2015-
2730) in Mozilla Firefox by inspecting source code [48]. The vulner-
ability was related to the computation of a cryptography algorithm
called ‘Elliptic Curve Digital Signature Algorithm (ECDSA)’ [41].
When inspecting the implementation of ECDSA the security tester
observed that the implementation does not handle corner cases,
such as division by zero. The vulnerability can be exploited to
generate invalid digital signatures when used for cryptography.

Software logs: Security testers perform manual examination of
logs to discover a vulnerability. From our qualitative analysis, we
observe security testers to collect logs from the build and debugging
tools. In the logs, security testers inspect evidence of vulnerabilities,
such as information leakage and uninitialized memory access.

Example: A security tester discovered a Mozilla Firefox vulnera-
bility (CVE-2013-5595) [13] by inspecting logs generated from a de-
bugging tool called ‘Valgrind’ [46]. The vulnerability is related to a
buffer overflow. The source code of interest resides in the ‘JavaScript
Engine’ of Mozilla Firefox and uses ‘malloc’, a C/C++ function used

Vulnerability Discovery Strategies Used in Software Projects
HCSE&CS-2020, September, 2020,

to allocate memory. The implementation does not check for condi-
tions that may cause buffer overflow [13]. Inspection of the Valgrind
logs also helped the security tester reveal other source code files
where buffer overflow conditions are not checked:“I found a few
other places that were performing unchecked multiplications to com-
pute buffer sizes” [13].

3.2.2 Malicious Payload Construction. The strategy of constructing
a malicious software artifact to discover a vulnerability. For this
strategy, security testers construct the payload with code snippets
or binary files. Upon construction, the payload is passed as input
to the software, which leads to an undesired consequence, such as
software crashes or leakage of data. We observe two sub-categories
for this strategy namely, constructing malicious code snippets and
constructing malicious binary files:

Code snippets: Security testers construct payload using code
snippets with programming languages, such as JavaScript, HTML,
and Python. Code snippets can be created manually by the security
testers themselves where they apply their knowledge to construct
source code snippets. Code snippets can also be created using au-
tomated tools, such as fuzzing tools. Fuzzing is used to generate
erroneous input to software so that the software can be monitored
for exceptions [1].

Example: A security tester constructed a payload manually using
the ‘marquee’ element in HTML to discover aMozilla Firefox vulner-
ability (CVE-2016-5262) [37]. The marquee element is used to create
a scrolling text or an image [47]. The vulnerability occurred due
to the incorrect event handling for the marquee element and could
have been exploited to conduct cross-site scripting attacks [16].

As an example of fuzzing tool usage, a practitioner discovered a
vulnerability in Thunderbird (CVE-2016-5824) [6] that can allow a
malicious user to cause a denial of service attack [17].

Binary files: Security testers construct binary files to discover
vulnerabilities in the software. We observe four sub-categories of
malicious binary construction: (i) certificates i.e. data files that
digitally bind a cryptography key; (ii) documents, such as PDF
files; (iii) multimedia files, such as image and video files, and (iv)
executables, such as .exe files.

Example: We provide examples of vulnerabilities for the four
sub-categories below:
Certificate: A digital certificate holds information that confirms
the identity of an information technology (IT) organization on
the Internet [5]. Each digital certificate contains a field called an
object identifier (OID). OID is a numeric value that identifies the IT
organization for which the certificate is being used. A security tester
constructed a digital certificate file to discover a Mozilla Firefox
vulnerability (CVE-2017-7792) [45]. The security tester created a
certificate with an OID with 399 digits 3. The vulnerability occurred
for not checking buffer size when processing certificates with long
OIDs [45] and could have been exploited to cause a crash [19].
Document: A security tester created a malicious PDF file to discover
a vulnerability (CVE-2018-5158) [20, 52]. The constructed malicious
PDF file contained array of strings. The PDF Viewer implementation
of Mozilla Firefox did not check if strings are included in a PDF file,
which allows malicious users to use strings as a method to inject
JavaScript snippets [52].
3https://bugzilla.mozilla.org/attachment.cgi?id=8872576

Multimedia: A malicious MP4 file was used to discover a vulnerabil-
ity in Mozilla Firefox (CVE-2015-0829) [39]. The malicious MP4 file
revealed that an adequate amount of buffer was not allocated when
writing MP4 files [39]. The vulnerability could have been exploited
to execute arbitrary code [15].
Executable: A malicious executable was used to discover a vulnera-
bility that affects Mozilla Firefox for the Windows operating system
(CVE-2017-7761) [18, 51]. The security tester created an executable
that creates a directory in ‘C:/Windows/Temp’. The vulnerability
could have been used to delete arbitrary files.

3.2.3 Misconfiguration. The strategy of identifying and altering
one or multiple configurations of the software to discover vulner-
abilities. As part of this strategy security testers first identify the
software’s configurations and their corresponding values. Then
security testers alter configuration values.

Example: A security tester discovered a vulnerability in Mozilla
Firefox (CVE-2015-0832) [33] by changing values for a configuration
‘security.cert_pinning.enforcement_level’ [36]. The configuration
is related to public key pinning, a mechanism that allows a website
to explicitly specify certificate authorities [7].

The configuration has four possible values: 0, 1, 2, and 3. The
default value is 1, which indicates that public key pinning is enabled
but not enforced [50]. To discover the vulnerability, public key
pinning was enforced by assigning a value of 2. The vulnerability
could have been used to conduct man-in-the-middle attacks [33].

3.2.4 Pernicious Execution. The strategy of identifying a sequence
of software interactions that expose a vulnerability. While an end-
user interacts with a software to accomplish a certain task, a security
tester interacts with the software to discover vulnerabilities.

The difference between pernicious execution to the other strate-
gies are: (i) unlike diagnostics, the practitioner does not inspect
source code and build/debug logs; (ii) unlike malicious payload con-
struction, the practitioner does not create malicious payload and
pass it as input to the software project of interest; and (iii) unlike
misconfiguration, the software’s configurations are not altered.

Example: A security tester discovered a vulnerability (CVE-2014-
1499) in Mozilla Firefox by identifying a sequence of interactions
that involve visiting websites [22, 32]. According to the bug re-
port [22], the tester first visited a website called ‘Hacker News’ 4,
a modern news aggregator website [2], by opening a tab in the
browser. Second, the tester visited a website 5 that uses WebRTC in
the same tab of the browser. WebRTC is a technology that enables
websites to capture audio/video media from a web camera [35]. Fi-
nally, when the tester pressed the back button of the Firefox browser
to go back to the Hacker News website, a prompt appeared.

The vulnerability occurs due to a race condition, which a ma-
licious user can exploit by convincing the user that a harmless
website is trying to access the user’s web camera [22]. The vul-
nerability is an example of how sequences of interactions can be
identified to discover vulnerabilities in software.

3.2.5 Rater Agreement. : The first and second authors respectively,
determines four and six vulnerability discovery strategies. The open
coding process took 107 and 114 hours respectively, for the first

4https://news.ycombinator.com/
5http://hughsk.github.io/post-process/

HCSE&CS-2020, September, 2020,
Bhuiyan et al.

and second authors. No new strategies generated after the analysis
of 215 and 221 bug reports respectively, for the first and second
authors. The Cohen’s Kappa is 0.58, which is ‘moderate’ agreement
according to the interpretation of Landis and Koch [29].

4 RQ2: FREQUENCY OF VULNERABILITY
DISCOVERY STRATEGIES

In this section, we answer: RQ2: How frequently are the identified
vulnerability discovery strategies used in open source software? Our
identified strategies are derived from one OSS organization. An-
swer to RQ2 can provide evidence if our identified strategies are
generalizable across other types of software projects, such as IDEs.

4.1 Methodology to Answer RQ2
We answer RQ2 using three steps: dataset construction, applying
closed coding [12], and conducting frequency analysis, to determine
the frequency of strategies in the datasets.

4.1.1 Dataset construction. We use five datasets to answer RQ2.
We construct these datasets from OSS projects that (i) have made
their bug reports available, and (ii) have bug reports that include
information of CVEs indexed by the NVD. We briefly describe each
dataset below:
Chrome: The Chrome dataset consists of bug reports for Google
Chrome, a web browser [10].
Eclipse: The Eclipse dataset consists of bug reports for the Eclipse
IDE [21].
Mozilla: The Mozilla dataset includes bug reports for the following
applications: Bugzilla, Firefox, SeaMonkey and Thunderbird.
OpenStack: The OpenStack dataset includes bug reports from Open-
Stack software i.e. software developed and maintained by Open-
Stack, which is used to create computational, storage, and network-
ing resources [38].
PHP : The PHP dataset includes bug reports for PHP, a programming
language used in web development [40].

After collecting the bug reports for all the five projects, a rater
who is not involved in the open coding process manually examined
if the three criteria mentioned in Section 3.1.1 is satisfied for each
of the collected bug reports.

4.1.2 Closed Coding to Determine Frequency of Strategies. Closed
coding is the process of mapping an entry to a pre-defined cate-
gory [12]. For RQ2, we use a rater who is not involved in deriving
the vulnerability discovery strategies to mitigate bias in the results.
The rater involved in closed coding first determines if a bug report
includes information related to a vulnerability discovery. Next, if
the bug reports include vulnerability discovery information, then
the rater determines if the bug report content can be mapped to
any of the four identified vulnerability discovery strategies listed
in Section 3.2. A vulnerability can be discovered using one or more
strategies, and the rater can map a bug report to one or multiple
strategies. Before performing the examination, the rater is provided
a reference document, which has the name, definition, and exam-
ples of each strategy. The reference document is included in our
verifiability package [4]. Upon completion of closed coding, we
obtain a mapping between each bug report and one or multiple
strategies.

A graduate student in the university conducts the closed coding
process. The rater is an M.Sc. student in Computer Science, with
four years of professional software development experience, and
two years of security testing experience. The student has also com-
pleted three cybersecurity-related courses offered at the graduate
level. The rater was not involved in the open coding process and
is not an author of the paper. The rater manually examined each
bug report and determined which of the identified strategies is
applicable for each of the bug reports.

4.1.3 Frequency analysis. We answer RQ2 using two metrics. First,
using the ‘PropVuln(𝑥)’ metric we quantify the proportion of vul-
nerabilities that are identified using each strategy. Second, using
the ‘Strategy/Year’ metric we quantify the temporal frequency for
each identified strategy. We use Equations 1 and 2 respectively,
to calculate ‘PropVuln’ and ‘Strategy/Year’. The ‘PropVuln’ metric
provides a summary of how frequently the identified strategies are
reported in bug reports. The ‘Strategy/Year’ metric shows how the
use of each strategy has evolved over time.

PropVuln(𝑥) =
number of vulnerabilities discovered with strategy 𝑥

number of vulnerabilities
(1)

Strategy/Year(𝑥,𝑦) =
number of vulnerabilities discovered with strategy 𝑥 in year 𝑦

number of vulnerabilities reported in year 𝑦
(2)

4.2 Answer to RQ2
In Table 1 we provide a breakdown of how many bug reports we
filtered using the criteria mentioned in Section 3.1.1. As shown
in Table 1, we identify 943, 36, 410, 119, and 124 bug reports re-
spectively, for the Chrome, Eclipse, Mozilla, OpenStack, and PHP
datasets. We report attributes of the five datasets in Table 2. From
Table 2, we observe except for Eclipse and OpenStack all datasets
are related to web-based software projects. The set of 410 Mozilla
bug reports includes the 312 bug reports used in Section 3.1.2.

Results: We answer RQ2 by first reporting the summary of the
five datasets and then reporting the ‘PropVuln’ and ‘Strategy/Year’
values. We report the ‘PropVuln’ values for the four strategies in
Table 3. The columns ‘Diagnostics’, ‘Execution’, ‘Misconfig.’, and
‘Payload’ respectively, presents the four strategies namely, diagnos-
tics, pernicious execution, misconfiguration, and malicious payload
construction. Except for Eclipse and OpenStack, we observe mali-
cious payload construction to be the most frequent vulnerability
discovery strategy. For Eclipse and OpenStack, the most frequently
occurring strategy is diagnostics. For Chrome, Firefox, and PHP,
83% or more of the total vulnerabilities are discovered using mali-
cious payload construction. For Eclipse and OpenStack respectively,
62.9% and 52.1% of the vulnerabilities are discovered using diag-
nostics. We also observe one strategy not to be comprehensive in
discovering all reported vulnerabilities in the five software projects,
which is congruent with prior research [3].

The strategies malicious payload construction and diagnostics
have sub-categories. We present the ‘PropVuln’ values for each
sub-category for malicious payload construction and diagnostics

Vulnerability Discovery Strategies Used in Software Projects
HCSE&CS-2020, September, 2020,

Table 1: Bug Reports Satisfying Filtering Criteria

Criteria Chrome Eclipse Mozilla OpenStack PHP

Initial 62,777 10,425 52,154 18,290 13,505

Criterion-1 3,241 147 427 368 182
Criterion-2 960 37 410 120 125
Criterion-3 943 36 410 119 124

Total 943 36 410 119 124

Table 2: Attributes of Bug Reports

Dataset Type Bug Reports CVEs Duration
Chrome Web browser 943 943 02/2010-06/2019
Eclipse IDE 36 36 03/2017-06/2019
Mozilla Web apps 410 410 07/2011-06/2019
OpenStack Computing 119 119 07/2012-06/2019
PHP Web progr. 124 124 09/2009-06/2019
All 1,632 1,632 09/2009-06/2019

Table 3: Proportion of Vulnerabilities Discovered by Each
Strategy. Highlighted Cells in Green Indicate the Most Fre-
quently Occurring Strategy for a Dataset.

Dataset Diagnostics Execution Misconfig. Payload
Chrome 10.0% 2.7% 0.8% 86.5%
Eclipse 62.9% 5.7% 8.5% 25.7%
Mozilla 13.4% 6.8% 2.7% 83.2%
OpenStack 52.1% 4.2% 29.4% 16.8%
PHP 15.3% 1.6% 17.7% 89.5%

Table 4: Proportion of Sub-categories for Malicious Payload
Construction and Diagnostics. Highlighted Cells in Green
Indicate the Most Frequently Occurring Sub-category.

Dataset Diagnostics Payload
Binary Snippet Code Build/Debug

Chrome 12.0% 88.0% 18.5% 81.5%
Eclipse 6.7% 93.3% 5.9% 94.1%
Mozilla 7.3% 92.7% 26.7% 73.3%
OpenStack 21.1% 78.9% 25.0% 75.0%
PHP 30.0% 70.0% 11.1% 88.9%

in Table 4. We observe ‘Snippet’ i.e., payload construction with
code snippet, to be the most frequently occurring sub-category
for malicious payload construction, whereas, ‘Build/Debug’ i.e.,
performing diagnostics through the build and debugging logs, is
the most frequently occurring sub-category for diagnostics.

5 DISCUSSION
In this section we discuss implications:

Implications for Practitioners. In Section 1 we mentioned a
Reddit post [23], where the forum participants suggested the use
of static analysis and fuzzing. Our categorization validates the
provided suggestions in the Reddit post [23]: we observe code
inspectionwith static analysis tools, and payload construction using
fuzzing tools are strategies that security testers use to discover
vulnerabilities. Furthermore, we observe security testers to not
only inspect source code but also inspect build and debug logs to
discover vulnerabilities.

Our categorization also includes pernicious execution and mis-
configuration. Practitioners can use our dataset to learn from vul-
nerabilities that were discovered using pernicious execution. For
misconfiguration, practitioners would be exploring available config-
urations of a software. We acknowledge exploring configurations
can be non-trivial, as software projects can have as many as 412
configurations [53]. Practitioners may find Xu et al. [53]’s find-
ings helpful: Xu et al. [53] proposed natural language processing
techniques to explore configurations efficiently.

Implications for Researchers. For future work, researchers
can investigate if security testers prioritize any strategies to dis-
cover vulnerabilities. Closed coding used in Section 4.1 requires
manual effort and might not scale for a large number of datasets.
Researchers can build upon our paper, and use methodologies pro-
posed by prior research [8, 9] to automatically identify vulnerability
discovery strategies from bug reports.

Limitations: Our analysis only includes vulnerabilities that are
indexed by the NVD, which could be limiting. Our categorization
is susceptible to conclusion validity as answers to RQ1 and RQ2
might be influenced by rater bias. Our empirical study is limited to
the datasets that we analyzed. Our identified strategies are not com-
prehensive. Investigating bug reports from other types of software
from the OSS domain and the proprietary domain might reveal
strategies not reported in our paper. We mitigate this limitation
by using OSS bug reports from a variety of sources including web-
based programming languages, computing services, and IDEs.

6 CONCLUSION
A categorization of software vulnerability discovery strategies can
help practitioners identify undiscovered vulnerabilities. We con-
struct a categorization by applying qualitative analysis on 312 bug
reports collected from the Mozilla organization. Next, we quantify
the frequency of the identified strategies with 1,632 bug reports.

We identify four strategies namely, diagnostics, malicious pay-
load construction, misconfiguration, and pernicious execution.Mali-
cious payload construction is themost frequently occurring strategy
for web-related software projects: Chrome, Mozilla, and PHP. For
Eclipse and OpenStack, diagnostics is the most frequent strategy.

Our findings have implications for practitioners and researchers.
Practitioners can use our categorization to discover new vulnerabili-
ties before deployment of software to end-users. Our categorization
can also be used as educational materials in cybersecurity-related
courses. Our paper lays the groundwork for future research related
to automated characterization of strategy prevalence.

ACKNOWLEDGMENTS
We thank the PASER group at Tennessee Tech. University for their
valuable feedback. The research was partially funded by the Cy-
bersecurity Education, Research and Outreach Center (CEROC) at
Tennessee Tech. University.

REFERENCES
[1] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.
[2] Mauricio Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,

Margaret-Anne Storey, and Marco Aurelio Gerosa. 2018. How Modern News

HCSE&CS-2020, September, 2020,
Bhuiyan et al.

Aggregators Help Development Communities Shape and Share Knowledge. In
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 499–510. https://doi.org/10.1145/3180155.3180180

[3] A. Austin and L. Williams. 2011. One Technique is Not Enough: A Comparison of
Vulnerability Discovery Techniques. In 2011 International Symposium on Empirical
Software Engineering and Measurement. 97–106. https://doi.org/10.1109/ESEM.
2011.18

[4] Farzana Ahamed Bhuiyan, Akond Rahman, and Patrick Morrison. 2020. Verifia-
bility Package for Paper. https://figshare.com/s/eaac5aeea283239f2c56. [Online;
accessed 05-Sep-2020].

[5] Matthew A. Bishop. 2002. The Art and Science of Computer Security. Addison-
Wesley Longman Publishing Co., Inc., USA.

[6] Brandon Perry. 2016. Bug 1275400 (CVE-2016-5824). https://bugzilla.mozilla.org/
show_bug.cgi?id=1275400. [Online; accessed 16-May-2020].

[7] C. Evans and C. Palmer. 2011. Public Key Pinning Extension for HTTP. https:
//tools.ietf.org/html/draft-ietf-websec-key-pinning-01. [Online; accessed 15-
Feb-2020].

[8] Oscar Chaparro, Carlos Bernal-Cardenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing the
Quality of the Steps to Reproduce in Bug Reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
ACM, New York, NY, USA, 86–96. https://doi.org/10.1145/3338906.3338947

[9] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
ACM, New York, NY, USA, 396–407. https://doi.org/10.1145/3106237.3106285

[10] Chrome. 2020. Chrome infrastructure. https://chromium.googlesource.com/infra/
infra/+/master/appengine/monorail/doc/api.md. [Online; accessed 26-Jan-2020].

[11] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104

[12] Benjamin F Crabtree and William L Miller. 1999. Doing qualitative research. sage
publications.

[13] Dan Gohman. 2013. Bug 916580 (CVE-2013-5595). https://bugzilla.mozilla.org/
show_bug.cgi?id=916580. [Online; accessed 09-Feb-2020].

[14] Danelle Au. 2015. The Importance of Learning From Hackers. https://www.
securityweek.com/importance-learning-hackers. [Online; accessed 09-Feb-2020].

[15] National Vulnerability Database. 2015. NVD-CVE-2015-0829. https://nvd.nist.
gov/vuln/detail/CVE-2015-0829. [Online; accessed 19-Feb-2020].

[16] National Vulnerability Database. 2016. NVD-CVE-2016-5262. https://nvd.nist.
gov/vuln/detail/CVE-2016-5262. [Online; accessed 27-Feb-2020].

[17] National Vulnerability Database. 2016. NVD-CVE-2016-5824. https://nvd.nist.
gov/vuln/detail/CVE-2016-5824. [Online; accessed 19-May-2020].

[18] National Vulnerability Database. 2017. NVD-CVE-2017-7761. https://nvd.nist.
gov/vuln/detail/CVE-2017-7761. [Online; accessed 17-Feb-2020].

[19] National Vulnerability Database. 2017. NVD-CVE-2017-7792. https://nvd.nist.
gov/vuln/detail/CVE-2017-7792. [Online; accessed 18-Jan-2020].

[20] National Vulnerability Database. 2018. NVD-CVE-2018-5158. https://nvd.nist.
gov/vuln/detail/CVE-2018-5158. [Online; accessed 30-Jan-2020].

[21] Eclipse. 2020. The Platform for Open Innovation and Collaboration. https:
//www.eclipse.org/. [Online; accessed 27-Jan-2020].

[22] Ehsan Akhgari. 2014. Bug 961512 (CVE-2014-1499). https://bugzilla.mozilla.org/
show_bug.cgi?id=961512. [Online; accessed 01-Feb-2020].

[23] eusian. 2020. Strategies to find software vulnerabilities: what are the cate-
gories? https://www.reddit.com/r/cybersecurity/comments/egflzj/strategies_
to_find_software_vulnerabilities_what/. [Online; accessed 23-Jan-2020].

[24] M. Gegick, P. Rotella, and T. Xie. 2010. Identifying security bug reports via text
mining: An industrial case study. In 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010). 11–20.

[25] Giovanni Vigna. 2019. How to Think Like a Hacker. https://www.darkreading.
com/vulnerabilities---threats/how-to-think-like-a-hacker/a/d-id/1335989. [On-
line; accessed 10-Feb-2020].

[26] K. Herzig, S. Just, and A. Zeller. 2013. It’s not a bug, it’s a feature: How misclassi-
fication impacts bug prediction. In 2013 35th International Conference on Software
Engineering (ICSE). 392–401.

[27] Yuan Jiang, Pengcheng Lu, Xiaohong Su, and Tiantian Wang. 2020. LTRWES:
A new framework for security bug report detection. Information and Software
Technology 124 (2020), 106314. https://doi.org/10.1016/j.infsof.2020.106314

[28] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves
Le Traon, and Mark Harman. 2019. The Importance of Accounting for Real-
World Labelling When Predicting Software Vulnerabilities. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
695–705. https://doi.org/10.1145/3338906.3338941

[29] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159–174. http:
//www.jstor.org/stable/2529310

[30] Gary McGraw. 2018. Software Security: Building Security In. Addison-Wesley
Professional.

[31] L. Moreno, W. Bandara, S. Haiduc, and A. Marcus. 2013. On the Relationship
between the Vocabulary of Bug Reports and Source Code. In 2013 IEEE Interna-
tional Conference on Software Maintenance. 452–455. https://doi.org/10.1109/
ICSM.2013.70

[32] Mozilla. 2014. Mozilla Foundation Security Advisory 2014-19. https://www.
mozilla.org/en-US/security/advisories/mfsa2014-19/. [Online; accessed 11-Jan-
2020].

[33] Mozilla. 2015. Mozilla Foundation Security Advisory 2015-13. https://www.
mozilla.org/en-US/security/advisories/mfsa2015-13/. [Online; accessed 17-Jan-
2020].

[34] Mozilla. 2020. Bugzilla Main Page. https://bugzilla.mozilla.org/home. [Online;
accessed 03-Feb-2020].

[35] Mozilla Developer Network. 2020. WebRTCAPI. https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC_API. [Online; accessed 16-Feb-2020].

[36] Muneaki Nishimura. 2014. Bug 1065909 (CVE-2015-0832). https://bugzilla.mozilla.
org/show_bug.cgi?id=1065909. [Online; accessed 22-Feb-2020].

[37] Nikita. 2016. Bug 1277475 (CVE-2016-5262). https://bugzilla.mozilla.org/show_
bug.cgi?id=1277475. [Online; accessed 13-Feb-2020].

[38] Openstack. 2020. Openstack - Build the future of Open Infrastructure. https:
//www.openstack.org/. [Online; accessed 21-Feb-2020].

[39] pantrombka. 2015. Bug 1128939 (CVE-2015-0829). https://bugzilla.mozilla.org/
show_bug.cgi?id=1128939. [Online; accessed 10-Feb-2020].

[40] PHP. 2020. PHP Bug Tracking System. https://bugs.php.net/. [Online; accessed
28-Jan-2020].

[41] T. Pornin. 2013. Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA). https://tools.ietf.org/
html/rfc6979. [Online; accessed 28-Jan-2020].

[42] Akond Rahman and Laurie Williams. 2019. A Bird’s Eye View of Knowledge
Needs Related to Penetration Testing. In Proceedings of the 6th Annual Symposium
on Hot Topics in the Science of Security (Nashville, Tennessee, USA) (HotSoS ’19).
Association for Computing Machinery, New York, NY, USA, Article 9, 2 pages.
https://doi.org/10.1145/3314058.3317294

[43] Johnny Saldana. 2015. The coding manual for qualitative researchers. Sage.
[44] Yonghee Shin and Laurie Williams. 2013. Can traditional fault prediction models

be used for vulnerability prediction? Empirical Software Engineering 18, 1 (01 Feb
2013), 25–59. https://doi.org/10.1007/s10664-011-9190-8

[45] Tyson Smith. 2017. Bug 1368652 (CVE-2017-7792). https://bugzilla.mozilla.org/
show_bug.cgi?id=1368652. [Online; accessed 14-Feb-2020].

[46] Valgrind. 2019. Valgrind Home. http://www.valgrind.org/. [Online; accessed
22-Feb-2020].

[47] w3docs. 2020. HTML <marquee> Tag. https://www.w3docs.com/learn-html/
html-marquee-tag.html. [Online; accessed 13-Feb-2020].

[48] watsonbladd. 2015. Bug 1125025 (CVE-2015-2730). https://bugzilla.mozilla.org/
show_bug.cgi?id=1125025. [Online; accessed 10-Feb-2020].

[49] D. Wijayasekara, M. Manic, and M. McQueen. 2014. Vulnerability identification
and classification via text mining bug databases. In IECON 2014 - 40th Annual
Conference of the IEEE Industrial Electronics Society. 3612–3618. https://doi.org/
10.1109/IECON.2014.7049035

[50] Mozilla Wiki. 2019. SecurityEngineering/Public Key Pinning. https://wiki.mozilla.
org/SecurityEngineering/Public_Key_Pinning. [Online; accessed 29-Jan-2020].

[51] Wladimir Palant. 2017. Bug 1215648 (CVE-2017-7761). https://bugzilla.mozilla.
org/show_bug.cgi?id=1215648. [Online; accessed 10-Feb-2020].

[52] Wladimir Palant. 2018. Bug 1452075 (CVE-2018-5158). https://bugzilla.mozilla.
org/show_bug.cgi?id=1452075. [Online; accessed 10-Feb-2020].

[53] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have given Me Too Many Knobs!: Under-
standing and Dealing with over-Designed Configuration in System Software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 307–319. https://doi.org/10.1145/2786805.2786852

[54] Z. Yu, C. Theisen, L. Williams, and T. Menzies. 2019. Improving Vulnerability
Inspection Efficiency Using Active Learning. IEEE Transactions on Software
Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2949275

[55] T. Zimmermann, N. Nagappan, and L. Williams. 2010. Searching for a Needle in
a Haystack: Predicting Security Vulnerabilities for Windows Vista. In 2010 Third
International Conference on Software Testing, Verification and Validation. 421–428.
https://doi.org/10.1109/ICST.2010.32

https://doi.org/10.1145/3180155.3180180
https://doi.org/10.1109/ESEM.2011.18
https://doi.org/10.1109/ESEM.2011.18
https://figshare.com/s/eaac5aeea283239f2c56
https://bugzilla.mozilla.org/show_bug.cgi?id=1275400
https://bugzilla.mozilla.org/show_bug.cgi?id=1275400
https://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
https://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1145/3106237.3106285
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/doc/api.md
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/doc/api.md
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://bugzilla.mozilla.org/show_bug.cgi?id=916580
https://bugzilla.mozilla.org/show_bug.cgi?id=916580
https://www.securityweek.com/importance-learning-hackers
https://www.securityweek.com/importance-learning-hackers
https://nvd.nist.gov/vuln/detail/CVE-2015-0829
https://nvd.nist.gov/vuln/detail/CVE-2015-0829
https://nvd.nist.gov/vuln/detail/CVE-2016-5262
https://nvd.nist.gov/vuln/detail/CVE-2016-5262
https://nvd.nist.gov/vuln/detail/CVE-2016-5824
https://nvd.nist.gov/vuln/detail/CVE-2016-5824
https://nvd.nist.gov/vuln/detail/CVE-2017-7761
https://nvd.nist.gov/vuln/detail/CVE-2017-7761
https://nvd.nist.gov/vuln/detail/CVE-2017-7792
https://nvd.nist.gov/vuln/detail/CVE-2017-7792
https://nvd.nist.gov/vuln/detail/CVE-2018-5158
https://nvd.nist.gov/vuln/detail/CVE-2018-5158
https://www.eclipse.org/
https://www.eclipse.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=961512
https://bugzilla.mozilla.org/show_bug.cgi?id=961512
https://www.reddit.com/r/cybersecurity/comments/egflzj/strategies_to_find_software_vulnerabilities_what/
https://www.reddit.com/r/cybersecurity/comments/egflzj/strategies_to_find_software_vulnerabilities_what/
https://www.darkreading.com/vulnerabilities---threats/how-to-think-like-a-hacker/a/d-id/1335989
https://www.darkreading.com/vulnerabilities---threats/how-to-think-like-a-hacker/a/d-id/1335989
https://doi.org/10.1016/j.infsof.2020.106314
https://doi.org/10.1145/3338906.3338941
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1109/ICSM.2013.70
https://doi.org/10.1109/ICSM.2013.70
https://www.mozilla.org/en-US/security/advisories/mfsa2014-19/
https://www.mozilla.org/en-US/security/advisories/mfsa2014-19/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-13/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-13/
https://bugzilla.mozilla.org/home
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://bugzilla.mozilla.org/show_bug.cgi?id=1065909
https://bugzilla.mozilla.org/show_bug.cgi?id=1065909
https://bugzilla.mozilla.org/show_bug.cgi?id=1277475
https://bugzilla.mozilla.org/show_bug.cgi?id=1277475
https://www.openstack.org/
https://www.openstack.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=1128939
https://bugzilla.mozilla.org/show_bug.cgi?id=1128939
https://bugs.php.net/
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://doi.org/10.1145/3314058.3317294
https://doi.org/10.1007/s10664-011-9190-8
https://bugzilla.mozilla.org/show_bug.cgi?id=1368652
https://bugzilla.mozilla.org/show_bug.cgi?id=1368652
http://www.valgrind.org/
https://www.w3docs.com/learn-html/html-marquee-tag.html
https://www.w3docs.com/learn-html/html-marquee-tag.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1125025
https://bugzilla.mozilla.org/show_bug.cgi?id=1125025
https://doi.org/10.1109/IECON.2014.7049035
https://doi.org/10.1109/IECON.2014.7049035
https://wiki.mozilla.org/SecurityEngineering/Public_Key_Pinning
https://wiki.mozilla.org/SecurityEngineering/Public_Key_Pinning
https://bugzilla.mozilla.org/show_bug.cgi?id=1215648
https://bugzilla.mozilla.org/show_bug.cgi?id=1215648
https://bugzilla.mozilla.org/show_bug.cgi?id=1452075
https://bugzilla.mozilla.org/show_bug.cgi?id=1452075
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1109/TSE.2019.2949275
https://doi.org/10.1109/ICST.2010.32

	Abstract
	1 Introduction
	2 Related Work
	3 RQ1: categorization of Vulnerability Discovery Strategies
	3.1 Methodology to Answer RQ1
	3.2 Answer to RQ1

	4 RQ2: Frequency of Vulnerability Discovery Strategies
	4.1 Methodology to Answer RQ2
	4.2 Answer to RQ2

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

