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ABSTRACT
Context: Insecure coding patterns (ICPs), such as hard-coded pass-
words can be inadvertently introduced in infrastructure as code
(IaC) scripts, providing malicious users the opportunity to attack
provisioned computing infrastructure. As performing code reviews
is resource-intensive, a characterization of co-located ICPs, i.e., ICPs
that occur together in a script can help practitioners to prioritize
their review efforts and mitigate ICPs in IaC scripts. Objective:
The goal of this paper is to help practitioners in prioritizing code
review efforts for infrastructure as code (IaC) scripts by conducting an
empirical study of co-located insecure coding patterns in IaC scripts.
Methodology:We conduct an empirical study with 1613, 2764 and
2845 Puppet scripts respectively collected from three organizations
namely, Mozilla, Openstack, and Wikimedia. We apply association
rule mining to identify co-located ICPs in IaC scripts. Results:
We observe 17.9%, 32.9%, and 26.7% of the scripts to include co-
located ICPs respectively, for Mozilla, Openstack, and Wikimedia.
The most frequent co-located ICP category is hard-coded secret
and suspicious comment. Conclusion: Practitioners can prioritize
code review efforts for IaC scripts by reviewing scripts that include
co-located ICPs.
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1 INTRODUCTION
Infrastructure as code (IaC) is the practice of automatically man-
aging configurations and provisioning computing environments
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using source code [8]. Information technology (IT) organizations,
such as Ambit Energy 1 and KPN 2, use IaC scripts to automatically
manage their software configurations and construct automated
deployment pipelines [15, 21]. Practitioners use IaC tools, such as
Puppet 3 and Terraform 4, that provide utilities to implement the
practice of IaC [4]. Practitioners have reported the benefits of using
IaC scripts. For example, Ambit Energy observed their deployment
frequency to increase by a factor of 1,200 using Puppet scripts [15].
KPN, a Dutch telecommunications company, uses Puppet scripts to
manage its 10,000 servers [16].

Despite reported benefits, IaC scripts are susceptible to including
insecure coding patterns (ICPs) [19, 20]. ICPs are recurrent coding
patterns that indicate security weaknesses in source code [19, 20].
The existence of ICPs in IaC scripts necessitates practitioners to
perform rigorous code reviews.

However, performing code reviews is a human-centric activity
that involves practitioners and requires resources [26]. Practition-
ers can benefit from a prioritization strategy that may help them
to allocate their code review efforts efficiently. One prioritization
strategy could be identifying IaC scripts with co-located ICPs. Co-
located ICPs are ICPs that occur together in a source code file. Let
us consider a hypothetical scenario in this regard, where Dolly, a
practitioner is assigned to review 1,000 Puppet scripts so that ICPs
are detected and mitigated. Dolly is aware that performing code
reviews is time consuming. She wants to prioritize review efforts by
inspecting scripts with co-located ICPs as she might be able to de-
tect and repair more ICPs. She wonders if scientific evidence shows
ICPs to co-locate in IaC scripts. Dolly can be informed by a research
study that reports empirical evidence to exist for co-located ICPs.
Furthermore, characterizing co-located ICPs can help researchers
understand the nature of ICPs in IaC scripts.

We observe anecdotal evidence related to co-located ICPs in open
source software (OSS) repositories. Let us consider Figure 1 in this
regard. Figure 1 presents a Puppet code snippet downloaded from
an OSS repository [28]. We observe two ICPs to co-locate: one in-
stance of a hard-coded secret and one instance of invalid IP address
binding. Hard-coded secret and invalid IP address binding respec-
tively correspond to the ICPs of revealing sensitive information
and using the IP address 0.0.0.0 for configuration [19]. We hypoth-
esize that through systematic investigation we can characterize
co-located ICPs similar to that of Figure 1.

1https://www.ambitenergy.com/
2https://www.kpn.com/
3https://puppet.com/
4https://www.terraform.io/
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1 http-socket => '0.0.0.0:5668',
2 mount =>

↪→ '/dynamicproxy-api=/usr/local/bin/invisible-unicorn.py',
3 callable => 'app',
4 },
5 cron { 'proxydb-bak':
6 ensure => present,
7 user => 'root',
8 }

Invalid IP address binding

Hard-coded secret

1

Figure 1: Co-located ICPs in a Puppet code snippet down-
loaded from an OSS repository [28].

The goal of this paper is to help practitioners in prioritizing code
review efforts for infrastructure as code (IaC) scripts by conducting an
empirical study of co-located insecure coding patterns in IaC scripts.

We answer the following research questions:
• RQ1: What categories of insecure coding patterns (ICPs) co-locate
in infrastructure as code scripts? How frequently do ICPs co-locate?

• RQ2: What source code metrics characterize co-located insecure
coding patterns in infrastructure as code scripts?
We conduct an empirical study with 1613, 2764, and 2845 Puppet

scripts respectively, collected from Mozilla 5, Openstack 6, and
Wikimedia 7. First, we identify what categories of ICPs are co-
located using association rule mining [5]. Next, we identify which
source code metrics characterize scripts that have co-located ICPs.

We make the following contributions:
• A list of ICPs that co-locate in IaC scripts;
• An evaluation of how frequently ICPs co-locate in IaC scripts;
and

• A list of source code metrics that characterize co-located ICPs in
IaC scripts.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the necessary background on infrastruc-
ture as code scripts and discuss relevant prior work.

2.1 Background
IaC is the process of automatically managing configurations and
provisioning computing environments using source code [8]. A
dedicated programming language allows specifying the necessary
environment settings, such as required libraries or the amount of
RAM for computing environments, such as virtual machine (VM).
Performing these tasks is repetitive and needs a significant degree
of expertise. IaC makes it possible to avoid the manual process of
upgrading environment versions or setting up a new environment
by executing a simpler script [9]. Automation and simplicity reduces
the test and release cycle time to a great extent, lowers the chance
of errors and increases deployment flexibility [8].

Puppet is considered as one of the most popular tools for infras-
tructure automation [9, 24]. Puppet provides support to define en-
vironment parameters, configure deployment, and customize Ruby
plug-ins in the process of continuous integration. Puppet scripts
are called manifests and are composed of resources, resource type

5https://hg.mozilla.org/
6https://git.openstack.org/cgit
7https://gerrit.wikimedia.org/r/#/admin/projects/

declarations, and inter-resource dependencies [9]. These manifest
files are written in domain-specific languages (DSL) [24].

2.2 Related Work
Our paper is closely related to prior research on IaC scripts. Sharma
et al. [25] and Bent et al. [27], in separate studies investigated code
maintainability aspects of Puppet scripts. Jiang and Adams [10]
investigated the co-evolution of IaC scripts and other software
artifacts, such as build files and source code. Rahman et al. [18]
conducted a systematic mapping study with 32 IaC-related publica-
tions and observed a lack of security-related research in the domain
of IaC. Hanappi et al. [6] investigated how the convergence of IaC
scripts can be automatically tested, and proposed an automated
model-based test framework. Rahman et al. [17] constructed a de-
fect taxonomy for IaC scripts that included eight defect categories.
In this paper, we build upon the research conducted by Rahman et
al. [19], which identified seven categories of ICPs that are indica-
tive of security weaknesses in IaC scripts. They identified 21,201
occurrences of ICPs but did not investigate co-located ICPs.

From the above-mentioned discussion, we observe a lack of
research that investigates co-located ICPs in IaC scripts. We address
this research gap in our paper.

3 METHODOLOGY
ICPs that occur together in one IaC script are co-located ICPs. ICPs
are recurring coding patterns in the source code of a program
that suggests a potential security weakness [19]. ICPs may not
always cause a security breach but still needs attention and review.
Rahman et al. [19] derived a list of seven ICPs in IaC scripts through
an empirical study on 1,726 IaC scripts. The identified ICPs are:
(i) Admin by default, (ii) Empty password, (iii) Hard-coded secret,
(iv) Invalid IP address binding, (v) Suspicious comment, (vi) Use
of HTTP without TLS/SSL and (vii) Use of weak cryptography
algorithms.

3.1 Dataset
We collect our Mozilla, Openstack, and Wikimedia datasets from
the prior work done by Rahman et al. [19]. To identify ICPs in the
three datasets we apply the following steps: first, we apply SLIC [19]
on every IaC script in the dataset. Second, we manually inspect each
detected ICP occurrence as static analysis tools are susceptible to
generating false positives [11]. The last author, with eight years of
experience in software security manually perform the inspection
by applying closed coding [3] to identify which scripts have what
categories of ICPs. The last author maps each script to an ICP.

SLIC respectively, generated 1334, 5664, and 2987 ICP alerts of
which 210, 1560, and 326 are false positives for Mozilla, Openstack,
and Wikimedia. By filtering false positives we identify 1124, 4111,
and 2661 ICPs respectively, in Mozilla, Openstack, and Wikimedia.
All constructed datasets are available online [1].

3.2 Methodology to Answer RQ1
We provide the methodology to answer RQ1 in this section.
Co-location categories: To find what categories of ICPs co-locate
in IaC scripts, we use association rule mining [5]. Association rule
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mining is an unsupervised learning algorithm that identifies co-
located patterns in datasets [5]. Using association rule mining we
identify co-located ICP categories that are of length >= 2. As shown
in Figure 1, one such example is (Hard-coded secret, Invalid IP address
binding), which is of length 2. We do not use any cutoffs for support
and confidence as we want to identify all co-located ICP categories.
Frequency Metrics: We characterize how frequently ICPs co-
locate using two metrics for each identified ICP co-location cate-
gories. The first metric quantifies how many of the ICPs are co-
located. The second metric says how many scripts have co-located
ICPs.
• Proportion of Co-located ICPs (ICP Prop): This metric refers
to the percentage of ICPs that belong to a certain co-location
category.

ICP Prop (𝑥 ) =
# of instances with co-location category 𝑥

# of ICPs in the dataset
∗ 100%

(1)

• Percentage of IaC Scripts (Script Prop): This metric refers to
the percentage of scripts having co-location category, 𝑥 .

Script Prop (𝑥 ) =
# of scripts with >= 1 co-location category 𝑥

# of scripts in the dataset
∗ 100%

(2)

3.3 Methodology to Answer RQ2
We answer RQ2 by computing statistical significance and corre-
lation magnitude for each of the 10 metrics listed in Table 1. We
select these code metrics as these code metrics characterize buggy
IaC scripts according to Rahman and Williams [22]. Our hypoth-
esis is that code metrics that characterize buggy IaC scripts will
also correlate scripts with ICPs and co-located ICPs. We repeat
the computation process of statistical significance and correlation
magnitude for two cases: (i) neutral scripts and scripts with at least
one ICP and (ii) neutral scripts, scripts with one ICP, and scripts
with co-located ICPs.
Statistical Tests: We apply two statistical tests: first, we use the
Mann-Whitney U test, a non-parametric test that compares two
distributions [13]. While applying the Mann Whitney U test, we
compare if each of the 10 code metrics is significantly different be-
tween scripts with no ICPs and scripts with at least one ICP. Second,
we quantify the correlation between code metrics and scripts with
co-located ICPs using the Kruskal Wallis H test, a non-parametric
test that can compare more than two distributions [12]. For the
Kruskal Wallis H test, we quantify if each of the 10 code metrics

Table 1: Metrics [22] used to answer RQ2

Metric Description
Attribute Count of attributes used to define and specify configuration values.
Command Count of bash and batch commands that need to be executed.
Ensure Count of checks used to ensure existence of a file.
File Count of files, directories, and symbolic links using the ‘file’ syntax that need to be managed.
File mode Count of file permissions i.e. file modes that are specified.
Hard-coded
string

Count of hard-coded strings that are used to specify configuration values.

Include Count of occurrences when external dependent modules are specified.
Lines of code
(LOC)

Size of scripts as measured by the total number of lines of code.

Ordering Count of functions that are used to specify the order of execution.
SSH_KEY Count of SSH keys that are specified.

is significantly different among three groups: scripts with no ICPs,
scripts with one ICP, and scripts with at least one co-located ICP.
Correlation Magnitude: We use two approaches to compute cor-
relation magnitude: first, we use Cliff’s Delta [2] to compare the
correlation magnitude for a metric between insecure and neutral
scripts. We interpret Cliff’s Delta values according to Romano et
al.[23]’s recommendations: ‘negligible difference’ when Δ < 0.147,
‘small difference’ when 0.147 < Δ < 0.33, ‘medium difference’ when
0.33 < Δ < 0.474, and ‘large difference’ when Δ > 0.474. Second,
we use feature importance, similar to prior work [22] to compute
the correlation magnitude between each metric and scripts with
co-located ICPs. We use the Random Forest (RF) [7] algorithm using
Scikit Learn API [14] to calculate the importance of each source
code metrics with respect to the co-location of ICPs. The output
value varies from zero to one, and a higher value for a source code
metric indicates a higher correlation with co-located ICPs in IaC
scripts. When constructing the RF model, the independent vari-
ables are each of the 10 metrics, whereas the dependent variable
corresponds to three categories of scripts: neutral scripts, scripts
with only one ICP, and scripts with co-located ICPs.

For both, Mann Whitney U and Kruskal Wallis H tests, we reject
the null hypothesis is 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05.

4 EMPIRICAL FINDINGS
In this section, we report our empirical findings.

4.1 Answer to RQ1
We answer RQ1: What categories of insecure coding patterns
(ICPs) co-locate in infrastructure as code scripts? How fre-
quently do ICPs co-locate? in this section. For Mozilla, Open-
stack, and Wikimedia we identify 290, 910, and 761 Puppet scripts
with at least one occurrence of co-located ICPs. We present the co-
located ICP categories along with their ICP proportion and script
proportion values for Mozilla, Openstack, and Wikimedia respec-
tively, in Tables 2, 3 and 4.

Table 2: Answer to RQ1: ICP prop. and script prop. values
for Mozilla. The most frequent ICP co-location category is
hard-coded secret and suspicious comment (S, C).

Co-located ICP Category8 ICP Prop Script Prop Count
(S, C) 2.79 11.03 1
(S, W) 1.39 5.52 1
(S, H) 0.96 3.79 1
(W, H) 0.70 2.76 1
(C, H), (W, C, H), (W, C) 0.61 2.41 3
(A, B), (W, B), (S, W, B), (S, W, H) 0.52 2.07 4
(S, C, H), (S, C, W), (S, C, H, W) 0.43 1.72 3
(A, S), (A, H), (A, C), (A, W), (E, S), (E, C), (A, S, H),
(A, S, C), (A, S, W), (A, C, H), (A, W, H), (A, W, C),
(A, S, C, H), (A, S, W, H), (A, S, C, W), (A, W, C, H),
(A, S, C, W, H)

0.35 1.38 17

(E, H), (A, E), (E, W), (A, E, S), (A, E, H), (A, E, C),
(A, E, W), (E, S, H), (E, S, C), (E, S, W), (E, C, H), (E,
W, H), (E, W, C), (A, E, S, H), (A, E, S, C), (A, E, S,
W), (A, E, C, H), (A, E, W, H), (A, E, W, C), (E, S, C,
H), (E, S, W, H), (E, S, C, W), (E, W, C, H), (A, E, S,
C, H), (A, E, S, W, H), (A, E, S, C, W), (A, E, C, W,
H), (E, S, C, W, H), (A, E, S, C, W, H)

0.17 0.69 29

(C, B) 0.09 0.35 1
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Table 3: Answer to RQ1: ICP prop. and script prop. values
for Openstack. The most frequent ICP co-location category
is hard-coded secret and HTTP without TLS/SSL (S, H).

Co-located ICP Category8 ICP Prop Script Prop Count
(S, H) 3.14 15.57 1
(C, S) 2.01 9.98 1
(S, B) 0.93 4.61 1
(C, B) 0.73 3.62 1
(S, A) 0.71 3.51 1
(C, H) 0.60 2.96 1
(C, S, H) 0.49 2.41 1
(H, A), (S, H, A) 0.40 1.97 2
(S, W), (C, S, B) 0.38 1.86 2
(E, S) 0.24 1.21 1
(H, B) 0.22 1.10 1
(S, H, B) 0.20 0.99 1
(C, W) 0.18 0.88 1
(E, C), (C, S, W) 0.13 0.66 2
(A, B), (C, A), (S, A, B), (C, S, A), (C, H, A), (C, S, H,
A)

0.11 0.55 6

(E, C, S) 0.09 0.44 1
(S, H, W), (H, W), (C, H, B), (C, S, H, B) 0.07 0.33 4
(E, W), (E, H), (E, C, W), (E, S, W), (E, C, S, W) 0.04 0.22 5
(W, A), (E, B), (S, A, W), (H, A, W), (C, W, A), (E, S,
B), (E, H, B), (E, S, H), (E, C, H), (C, H, W), (S, H, A,
W), (C, S, A, W), (C, H, A, W), (E, S, H, B), (C, S, H,
W), (A, C, H, S, W)

0.02 0.11 16

Table 4: Answer to RQ1: ICP prop. and script prop. values
for Wikimedia. The most frequent ICP co-location category
is hard-coded secret and suspicious comment (S, C).

Co-located ICP Category 8 ICP Prop Script Prop Count
(S, C) 3.26 9.97 1
(S, H) 1.59 4.86 1
(C, H) 0.77 2.36 1
(S, B), (S, C, H) 0.43 1.31 2
(S, W) 0.34 1.05 1
(S, E) 0.30 0.92 1
(S, A) 0.26 0.79 1
(C, B) 0.21 0.66 1
(H, B), (W, C) 0.13 0.39 2
(B, A), (H, A), (S, B, A), (H, S, B), (S, C, B), (S, E, C),
(H, C, B), (E, H), (S, H, A), (E, C), (S, W, C), (H, S, C,
B)

0.09 0.26 12

(E, A), (W, E), (W, H), (S, E, A), (S, E, H, A), (W, E,
H), (S, E, H), (E, H, A)

0.04 0.13 8

We present the co-located ICP categories along with their ICP
proportion and script proportion values for Mozilla, Openstack, and
Wikimedia respectively, in Tables 2, 3 and 4. In all three tables ‘S’,
‘C’, ‘H’, ‘E’, ‘W’, ‘B’ and ‘A’ respectively denote hard-coded secret,
suspicious comments, HTTP without TLS/SSL, empty password,
weak cryptography algorithms, invalid IP address binding, and
admin by default.

In Tables 2, 3 and 4 ‘ICP Prop’ and ‘Script Prop’ respectively,
presents the percentage of ICPs and percentage of scripts for which
we observe ICP co-location. ‘Count’ represents the number of
unique co-located ICP categories. Tables 2, 3 and 4 are sorted based
on ‘ICP Prop.’ values. For example, from Table 2 we observe hard-
coded secret and suspicious comment to co-locate for 11.03% of the

8‘S’, ‘C’, ‘H’, ‘E’, ‘W’, ‘B’ and ‘A’ respectively denotes hard-coded secret, suspicious
comments, HTTP without TLS/SSL, empty password, weak cryptography algorithms,
invalid IP address binding, and admin by default.

scripts in the Mozilla dataset. The co-location category is (‘S’ , ‘C’)
indicating hard-coded secrets and comments that have an ICP Prop.
value of 2.79 and Script Prop. value of 11.03.

One possible explanation for ICP co-location can be attributed
to the operations that are implemented in the script. For example,
to setup a virtual network a practitioner may use ‘0.0.0.0’ as IP
address and ‘http’ for data transmission protocol. ‘0.0.0.0’ and ‘http’
are respectively instances of invalid IP address binding and HTTP
without TLS.

4.2 Answer to RQ2
In this section, we answerRQ2:What source codemetrics char-
acterize co-located insecure coding patterns in infrastruc-
ture as code scripts?

We report the median, maximum and minimum values of each
metric for insecure scripts and neutral scripts in Table 5. For exam-
ple, in the case of Mozilla, the median value for the metric ‘Attribute’
is respectively 12 and 2 for insecure and neutral scripts. We also re-
port the p-value and Cliff’s Delta value respectively in the ‘p-value’
and ‘Δ’ columns. The metrics ‘Attribute’ and ‘Hard-coded string’
have a large’ Cliff’s Delta value for all three datasets. The metric
‘Lines of code’ has a ‘large’ Cliff’s Delta value for two datasets. We
observe 8 of the 10 metrics to show correlation with IaC scripts
that have co-located ICPs.

In Table 6, we report the distribution of eachmetric for the scripts
with co-located ICPs, scripts with only one ICP and neutral scripts
with no ICP. We provide the median and maximum, minimum
values of each metric. For the Mozilla dataset, the median value of
‘Attribute’ is respectively 14, 8, and 2. We also report the p-value in
the ‘p-value’ columns.

In Table 7, we report a ranked order of each identified source
code metrics that characterize the co-location of ICPs in IaC scripts.
For Mozilla and Wikimedia dataset, we observe LOC to show the
strongest correlation with the co-location of ICPs in IaC. For Open-
stack, we observe the strongest correlation to be ‘Hard-coded string’.
This ranking is in accordance with our earlier findings presented
in Table 5 as we see the metrics ‘Lines of code’, ‘Hard-coded string’
and ‘Attribute’ have a stronger correlation for all three datasets.

5 DISCUSSION AND CONCLUSION
We discuss the implications of our findings in this section.

Implications for practitioners: Our findings have implications
for practitioners on how they can prioritize their review efforts
for IaC scripts. IT organizations can maintain a large number of
Puppet scripts, e.g. as many as 3,143 Puppet scripts [17]. Security
reviews for a large number of scripts can be time-consuming and
can benefit from code review prioritization strategies. One strategy
can be prioritizing Puppet scripts that have co-located ICPs. For
example, for Mozilla, Openstack, and Wikimedia respectively, secu-
rity reviews can be prioritized for the 11.0%, 15.5%, and 9.9% scripts
as these scripts contain the most frequently occurring co-located
ICP categories.

Coming back to the hypothetical example mentioned in Section 1
Dolly now has evidence that shows scripts with co-located ICPs
can vary between 17.9%∼32.9%.
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Table 5: Answer to RQ2: Comparing source codemetrics between two groups: scripts with no ICPs and at least one ICP. Metrics
with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for all datasets are indicated by ✪. Correlation magnitude using Cliff’s Delta is reported in the Δ column.

Source Code Metric Type Mozilla Openstack Wikimedia
Median (Max,Min) p-value Δ Median (Max,Min) p-value Δ Median (Max,Min) p-value Δ

Attribute ✪ 1.14e-44 0.52 2.93e-97 0.49 2.18e-100 0.52Insecure 12 ( 168,0 ) 14 ( 463,0 ) 15 ( 267,0 )
Neutral 2 ( 173,0 ) 5 ( 189,0 ) 5 ( 193,0 )

Command ✪ 1.84e-19 0.22 4.59e-26 0.14 2.95e-60 0.29Insecure 0 ( 5,0 ) 0 ( 10,0 ) 0 ( 23,0 )
Neutral 0 ( 6,0 ) 0 ( 15,0 ) 0 ( 15,0 )

Ensure ✪ 1.23e-04 0.13 4.20e-05 0.08 4.48e-38 0.29Insecure 0.5 ( 29,0 ) 0 ( 31,0 ) 1 ( 28,0 )
Neutral 0 ( 22,0 ) 0 ( 57,0 ) 0 ( 27,0 )

File ✪ 3.41e-08 0.17 1.05e-11 0.10 1.93e-40 0.28Insecure 0 ( 6,0 ) 0 ( 15,0 ) 1 ( 24,0 )
Neutral 0 ( 10,0 ) 0 ( 15,0 ) 0 ( 26,0 )

File mode ✪ 7.07e-11 0.18 5.47e-08 0.07 9.55e-41 0.27Insecure 0 ( 12,0 ) 0 ( 32,0 ) 1 ( 19,0 )
Neutral 0 ( 8,0 ) 0 ( 6,0 ) 0 ( 17,0 )

Hard-coded string ✪ 6.43e-65 0.63 1.95e-153 0.61 1.42e-106 0.53Insecure 7 ( 341,0 ) 10 ( 381,0 ) 11 ( 258,0 )
Neutral 1 ( 129,0 ) 3 ( 94,0 ) 3 ( 235,0 )

Include 0.06 0.06 8.38e-06 0.09 1.79e-01 0.02Insecure 1 ( 180,0 ) 1 ( 37,0 ) 0 ( 41,0 )
Neutral 1 ( 48,0 ) 0.5 ( 81,0 ) 0 ( 110,0 )

Lines of code ✪ 1.85e-55 0.59 1.28e-84 0.46 1.93e-111 0.55Insecure 60 ( 1178,8 ) 77.5 ( 1623,7 ) 58 ( 2247,6 )
Neutral 22 ( 407,0 ) 40 ( 612,0 ) 23 ( 518,0 )

Ordering ✪ 3.33e-11 0.19 1.92e-31 0.18
0

1.53e-34 0.24Insecure 0 ( 11,0 ) 0 ( 33,0 ) 0 ( 20,0 )
Neutral 0 ( 11,0 ) 0 ( 12,0 ) 0 ( 18,0 )

SSH 1.0 0.00 2.1e-03 0.004 4.91e-02 0.001Insecure 0 ( 0,0 ) 0 ( 1,0 ) 0 ( 1,0 )
Neutral 0 ( 0,0 ) 0 ( 0,0 ) 0 ( 0,0 )

Table 6: Answer to RQ2: Comparing source code metrics among three groups: scripts with no ICPs, one ICP, and co-located
ICPs. Source code metrics with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for all datasets are indicated by ✪.

Source Code Metric Type MOZI OSTK WIKI
Median (Max,Min) p-value Median (Max,Min) p-value Median (Max,Min) p-value

Attribute ✪
COLOCATE 14 ( 168,0 )

2.55e-44
14 ( 463,0 )

5.13e-96
18 ( 267,0 )

4.70e-107ONLY_ONE 8 ( 107,0 ) 12 ( 187,0 ) 10 ( 102,0 )
Neutral 2 ( 173,0 ) 5 ( 189,0 ) 5 ( 193,0 )

Command ✪
COLOCATE 0 ( 5,0 )

2.88e-23
0 ( 6,0 )

3.87e-25
0 ( 23,0 )

9.99e-70ONLY_ONE 0 ( 3,0 ) 0 ( 10,0 ) 0 ( 6,0 )
Neutral 0 ( 6,0 ) 0 ( 15,0 ) 0 ( 15,0 )

Ensure ✪
COLOCATE 0 ( 14,0 )

8.22e-06
0 ( 31,0 )

8.76e-06
2 ( 28,0 )

4.48e-38ONLY_ONE 1 ( 29,0 ) 1 ( 28,0 ) 1 ( 27,0 )
Neutral 0 ( 22,0 ) 0 ( 57,0 ) 0 ( 27,0 )

File ✪
COLOCATE 0 ( 6,0 )

1.96e-07
0 ( 14,0 )

4.85e-11
1 ( 24,0 )

3.80e-42ONLY_ONE 1 ( 5,0 ) 0 ( 15,0 ) 0 ( 16,0 )
Neutral 0 ( 10,0 ) 0 ( 15,0 ) 0 ( 26,0 )

File mode ✪
COLOCATE 0 ( 12,0 )

4.50e-10
0 ( 32,0 )

7.45e-07
1 ( 19,0 )

8.35e-46ONLY_ONE 0 ( 5,0 ) 0 ( 5,0 ) 0 ( 16,0 )
Neutral 0 ( 8,0 ) 0 ( 6,0 ) 0 ( 17,0 )

Hard-coded string ✪
COLOCATE 9 ( 341,0 )

3.21e-65
10 ( 381,0 )

1.95e-153
13 ( 258,0 )

7.07e-114ONLY_ONE 4 ( 46,0 ) 9 ( 123,0 ) 7 ( 132,0 )
Neutral 1 ( 129,0 ) 3 ( 94,0 ) 3 ( 235,0 )

Include
COLOCATE 1 ( 180,0 )

0.31
1 ( 37,0 )

1.33e-05
0 ( 41,0 )

9.31e-03ONLY_ONE 1 ( 34,0 ) 0 ( 8,0 ) 0 ( 15,0 )
Neutral 1 ( 48,0 ) 0.5 ( 81,0 ) 0 ( 110,0 )

Lines of code ✪
COLOCATE 67 ( 1178,8 )

4.89e-54
79 ( 1623,8 )

1.69e-84
64 ( 2247,6 )

3.20e-113ONLY_ONE 51 ( 211,15 ) 64 ( 478,7 ) 46 ( 325,8 )
Neutral 22 ( 407,0 ) 40 ( 612,0 ) 23 ( 518,0 )

Ordering ✪
COLOCATE 0 ( 7,0 )

5.57e-10
0 ( 33,0 )

5.59e-30
1 ( 20,0 )

9.44e-42ONLY_ONE 0 ( 11,0 ) 0 ( 10,0 ) 0 ( 10,0 )
Neutral 0 ( 11,0 ) 0 ( 12,0 ) 0 ( 18,0 )

SSH
COLOCATE 0 ( 0,0 )

1.0
0 ( 1,0 )

6.2e-03
0 ( 1,0 )

1.22e-01ONLY_ONE 0 ( 0,0 ) 0 ( 0,0 ) 0 ( 0,0 )
Neutral 0 ( 0,0 ) 0 ( 0,0 ) 0 ( 0,0 )
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Table 7: Correlation magnitude of the source code metrics
based on feature importance analysis.

Rank Mozilla Openstack Wikimedia
1 Lines of code (0.28) Hard-coded string (0.28) Lines of code (0.27)
2 Hard-coded string (0.19) Lines of code (0.26) Hard-coded string (0.19)
3 Attribute (0.18) Attribute (0.20) Attribute (0.18)
4 Include (0.09) Ensure (0.07) Ensure (0.07)
5 Ensure (0.07) Include (0.06) Include (0.07)
6 Ordering (0.05) Ordering (0.05) Command (0.06)
7 File (0.05) Command (0.04) Ordering (0.06)
8 Command (0.05) File (0.03) File (0.05)
9 File mode (0.03) File mode (0.02) File mode (0.04)
10 SSH_KEY (0.00) SSH_KEY (0.01) SSH_KEY (0.01)

Implications for researchers: We have provided one possible
explanation related to why co-located ICPs occur in Section 4.1.
We advocate for future research that will apply mixed methods
analysis to identify the root causes for co-location occurrence. As
static analysis is language-specific researchers can leverage our
findings in Section 4.2 to construct models that will predict scripts
with co-located ICPs.

Limitations: Our empirical study is limited to the datasets that
we analyzed. We use Puppet to construct our datasets, which is a
declarative language. We acknowledge that there may exist other
ICPs that we have not considered.

Conclusion: ICPs in IaC scripts can provide malicious users the
opportunity to perform large-scale data breaches. Prioritization of
security code reviews can help practitioners detect and mitigate
ICPs in IaC scripts. We conduct an empirical study with 7,222
Puppet scripts to characterize co-located ICPs in IaC scripts. First,
we identify the categories of ICPs that co-locate. Next, we quantify
the correlation between source code metrics and IaC scripts with
co-located ICPs.

We observe ICPs in IaC scripts to co-locate. Of the 7,222 Puppet
scripts, 21.06% have at least one instance of co-located ICPs. The
most frequently occurring co-located ICPs are (i) hard-coded secret
and suspicious comment, and (ii) hard-coded secret and HTTP
without TLS/SSL. We observe 8 of the 10 source code metrics to
characterize ICPs in IaC scripts.
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